设 [tex=6.071x1.214]6m6IpLK9nxKlloS9uQjB0qJni044ihmKs30/YJo0lk0=[/tex] 是来自两点分布总体 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的样本,[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的分布为:[tex=10.0x1.357]1D18VLvMeG0y48kk+342PX3X1cVt/wdubNm4e/fPnqo=[/tex],[tex=8.429x1.357]7W4fbrlEhytacNuAvXpmeg==[/tex],求样本 [tex=7.286x1.357]QvdrmMEkEkXBcM7p9FuvTbsy21jIXoxVmxejgq9Oet6d2gm5oU5lRrP4XvCfng1c[/tex] 的分布律
举一反三
- 设[tex=7.286x1.357]QvdrmMEkEkXBcM7p9FuvTbsy21jIXoxVmxejgq9Oet6d2gm5oU5lRrP4XvCfng1c[/tex] 是取自总体[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的样本,求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的期望[tex=0.643x1.0]hK6dRoCn+OGpoJ7dSqNW4g==[/tex] 的最大似然估计量.假设[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]服从参数为[tex=0.643x1.0]+D9NhKovEP8INGz+KZnr1A==[/tex]的泊松分布.
- 设 [tex=7.286x1.357]QvdrmMEkEkXBcM7p9FuvTbsy21jIXoxVmxejgq9Oet6d2gm5oU5lRrP4XvCfng1c[/tex] 是取自总体 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的一个样本,总体 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 服从几何分布,其分布律为 [tex=17.857x1.286]JKAm9afeOS+JY1Ct3SQhygQZ7XK+nQUvWc5KjhNvOVd9ymuu1lG9zOLcr4GgeV+a[/tex],其中 [tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex] 未知,[tex=4.5x1.214]xfn/0lVliMO+HsrMEoBSOw==[/tex] 试求 [tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex] 的矩估计量。
- 设总体样本[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]分布密度为[tex=13.786x2.429]j5agDdJkFTcU3oAEr7zMVYAjPcbxs/IMeWGBZRqrAAp5nM80HBliI2FsMIJFuxPTtJXiDCDbIuQQVc1CkS4r+k1ApRdAmckch0yVBoazhVU=[/tex][tex=8.714x1.357]QvdrmMEkEkXBcM7p9FuvTRREbj6qCffrqKI1v5nuZxJ1HbRT2CuEuk4k8nMm2n492d+m1RhEZcnJodizbZOaxg==[/tex]是来自总体[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的容量为 7 的样本,试求样本中位数[tex=1.786x1.357]4S5BGyfqec2GPYM2CZmcJw==[/tex]小于[tex=3.5x1.429]KulqzWgx+8tvN9KMDVeBfupGSVB8uby5QzRJHDbPphI=[/tex]的概率.
- 已知离散型随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的概率分布为[img=397x83]178ee6aa0d1a25e.png[/img](1) 写出[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的分布函数[tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex];(2) 求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的数学期望和方差.
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 以概率 1 取值为 0,而 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是任意的随机变量,证明 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立.