求一阶常系数线性差分方程初值问题的特解[tex=7.429x1.214]jOfoAvVkfg9KfwkiHBY6PodL3GclZA54e+UzPvXf95o=[/tex].
方程[tex=4.357x1.143]jOfoAvVkfg9KfwkiHBY6PgkM4fw7aXs/TRpaaafDX8c=[/tex]的特征方程为 [tex=3.071x1.0]05QqzR4cntN/5FIHQ6QAZQ==[/tex][tex=4.643x1.0]Qu7nxO27QWbnnB+kTQYAhukhuPx/Bk8roBM1/jF3J3qO7BQu2kpCjPhmzxe8RjLB[/tex] 其齐次方程的通解为 [tex=2.071x1.0]ipQM+zbA/CespTPJemD54Q==[/tex]设特解[tex=5.143x1.429]In5/CcmR+2H9laWhSvpZXebs3eiT5a4FaX1TSB54q6A=[/tex]则 [tex=29.786x2.357]Qr3xBc2x2dfXHZD2e/1SPdkjSPknVGkj2XKhci6NMw4nUI0q8U01pgbYcvCGPrSEwNh0iS4nTkGUnlZo/okOyBSorVw/ey++qEfTWUoDOLRn4gzqi36Jrc8aIpavCYHLTOKElddNmsCVprQeoPOSFAxMOYIWFYYCn0CYdccycnkE+qpqO42FWVaZO/x1D1s/SQeF9dq20Cvyh+RLKqn+XA==[/tex][tex=0.714x1.0]tvtB8rr3T9sn7Q/YdDnRow==[/tex] 通解 [tex=17.786x2.357]AQyvcNLDER5h7yX18iEI/ws3SyoE3Y/hR6mFyjWwZMrTv73LblQXlUwppn1iQv4lXGrnxslWlqiaO6s6SkaLPJ/5gsXvzCDp4/EA6cKQUrM2hVXAcu4E7Wu5H+bxPvTO[/tex]特解 [tex=7.143x2.357]+QKUwrwIhL+zXBD+jOFdvGqTtg9PFvMa6GE6tzFV/e2Y1PJ02/ydbaFqnO5sSwtK[/tex].
举一反三
- 求一阶常系数线性差分方程初值问题的特解[tex=7.357x1.357]74M7qflS93kXAc+9zezMlz06NOdO4vwQTXAbTKvbKyc=[/tex].
- 写出下列一阶差分方程特解的形式.[tex=7.429x1.214]6fkE7JJbP5ctfakfsX7RBtDjzKrh38WX/7Jmh4V99I0=[/tex].
- 求一阶差分方程 [tex=6.0x1.214]LfJFmBVK6wm+YKA4feYvDZm6W2wiQXpqAs2Y58g3EGA=[/tex] 的通解和满足初值条件的特解
- 一阶常系数差分方程yt+1-4yt=16(t+1)4t满足初值y0=3的特解是yt=______。
- 已知某二阶常系数非齐次线性差分方程的通解为[tex=10.429x1.286]94UAnG40IZGNKMO0vSw+Y6Uc0EvzEzxz0ZwwgyHKERTTc4iN+73JvEsBNPAhLKW8[/tex],求此差分方程.
内容
- 0
写出下列一阶差分方程特解的形式.[tex=6.5x1.429]WYPOSKG9CFF8aX873zvecgVtmcEF/8LN0A0238nzPLI=[/tex].
- 1
证明函数[tex=5.571x1.357]9JBii7jRBhoh780qZ0tryRK8xsQoUlhYfZQuhMhMDnM=[/tex]和[tex=4.0x1.357]jfi5T7HcwzGMiBwJ2lV3j+NXnQlEnbbUMmvyYiXHvUU=[/tex]是差分方程[tex=7.857x1.214]xujud0wAgZfHOMWmUwurQLeEpxG7ceO0KRX2OTNMMF8=[/tex]的两个线性无关的特解,并求该方程的通解.
- 2
求下列二阶常系数齐次线性微分方程初程问题的特解:[tex=12.214x1.429]tMKoC5WdSeSwXe1vmWfybNhc/HxHZW+gd8IJxpZOkZ/99pSQi5GTy27bQBGRD+vQElNgV5XTBASAjN6PvE0kJA==[/tex]
- 3
求下列二阶常系数齐次线性微分方程初程问题的特解:[tex=13.0x1.429]rjzw0bBUODiY66l+Mq83xHgA/Fzns+dVRKe7mm6kDKxbJmN0tX+IVXumjrwYj+cRuMnUF6d8JCYO34hlio/tCQ==[/tex]
- 4
求下列二阶常系数齐次线性微分方程初程问题的特解:[tex=13.357x1.429]AxsF4UE8SbdtKr57WzJLQb6ArlP+UIo/FEYfGCkjCn/uw3rYgYUkK5BOaGRC+fA+bBeFp4MsW5qM7L0ddoFt1A==[/tex].