计算\(\int_L {(x + y)dx + (y - x)dy} \),其中\(L\) 是抛物线\(x = {y^2}\) 上从点\((1,1)\) 到点\((4,2)\) 的一段弧。
A: \( - { { 34} \over 3}\)
B: \( { { 34} \over 3}\)
C: \( { { 43} \over 3}\)
D: \(- { { 43} \over 3}\)
A: \( - { { 34} \over 3}\)
B: \( { { 34} \over 3}\)
C: \( { { 43} \over 3}\)
D: \(- { { 43} \over 3}\)
举一反三
- 计算 \(\int_{\;L} {\left( {x + y} \right)dx + \left( {y - x} \right)dy} \),其中\(L\)是抛物线 \(y^2=x\)上从点\((1,1)\) 到点\((4,2)\)的一段弧。 A: \( { { 35} \over7}\) B: \( { { 36} \over 5}\) C: \( { { 37} \over 6}\) D: \( { { 34} \over 3}\)
- 计算\(\int_L {xydx} \),其中\(L\) 是抛物线\(y^2=x\) 上从点\((1, - 1)\) 到点\((1,1)\) 的一段弧。 A: \({3 \over 4}\) B: \({1 \over 2}\) C: \({2 \over 3}\) D: \({4 \over 5}\)
- 已知\(L\)为抛物线\({y^2} = x\) 上从点\(A\left( {1, - 1} \right)\) 到点\(B\left( {1,1} \right)\) 的一段弧,则\(\int_{\;L} {xyds} {\rm{ = }}\)( )。 A: \({3 \over 5}\) B: \({4 \over 3}\) C: \({5 \over 3}\) D: \({4 \over 5}\)
- 下列函数中,( )不是方程\( xy' + y - x^2 = 0 \)的解。 A: \( y = { { {x^2}} \over 3} + {1 \over x} \) B: \( y = { { {x^2}} \over 3} \) C: \( y = { { {x^2}} \over 3} + 2 \) D: \( y = { { {x^2}} \over 3} - {1 \over x} \)
- 求函数$y = {{1 + \root 3 \of {{x^2}} - \sqrt {2x} } \over {\sqrt x }}$的导数$y' = $( ) A: $ {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ B: $ - {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ C: ${1 \over 2}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$ D: ${1 \over 3}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$