某种电子元件的寿命[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex](以年计)服从数学期望为2的指数分布,各元件的寿命相互独立。随机取100只元件,求这100只元件的寿命之和大于180的概率。
举一反三
- 设某种元件的寿命服从数学期望为100小时的指数分布,且各元件的寿命相互独立,求16个元件的寿命总和大于1920小时的概率.
- 设电子元件的寿命时间 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] (单位: 小时) 服从参数 [tex=4.143x1.0]sCi5x95n/M0eDU+bkmAFhO0WP1baiMoqpf2mhtq2r1c=[/tex] 的指数分布,今独立测试 [tex=1.929x1.0]Ahmfdo6bCmnogYpp4NRgvg==[/tex] 个元件,记录它们的失效时间. 求:(1)没有元件在 800 小时之前失效的概率;(2)没有元件最后超过 3000 小时的概率.
- 已知某种电子元件的寿命 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]( 以小时计)服从参数为 1 / 1000 的指数分布. 某台电子仪器内装有 5 只这种元件,这 5 只元件中任一只损坏时仪器即停止工作,则仪器能正常工作 1000 小时以上的概率为[input=type:blank,size:6][/input].
- 某种电子元件的寿命[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]是随机变量,概率密度为[tex=11.286x3.929]42FOdvHzW+r0Kf0R9f1sPAt0Ukzmb462CDlag77uSh6JSZvXpc/+ysSN+qVHylgvEX3vwdn8AeVBrw0Nk0F+plf4XUH6zkZ1N9DysA8zmgfu8Yb0+NoVIwppO9+LLUNp0vDKRXfccCtai1PvN9HyPA==[/tex]3 个这种元件串联在一个线路中. 计算这 3 个元件使用了 150 小时后仍能使线路正常工作的概率
- 据以往经验,某种电器元件的寿命服从均值为100小时的指数分布,现随机取16只,设他们的寿命是相互独立的,则这16只元件的寿命总和大于1920小时的概率为( ).