曲线[img=92x26]18031aee43e99f3.png[/img]在点(1,3)处的切线方程为( )
A: [img=99x22]18031aee4ba3184.png[/img]
B: [img=103x22]18031aee5463cb8.png[/img]
C: [img=107x22]18031aee5cbb78b.png[/img]
D: [img=103x22]18031aee6416c2d.png[/img]
A: [img=99x22]18031aee4ba3184.png[/img]
B: [img=103x22]18031aee5463cb8.png[/img]
C: [img=107x22]18031aee5cbb78b.png[/img]
D: [img=103x22]18031aee6416c2d.png[/img]
举一反三
- 曲线[img=90x26]1803bb7197cd627.png[/img]在点(1,3)处的切线方程为( ) A: [img=103x22]1803bb71a0e3e2b.png[/img] B: [img=103x22]1803bb71a9bc0aa.png[/img] C: [img=103x22]1803bb71b2786f0.png[/img] D: [img=103x22]1803bb71b9e5b3b.png[/img]
- 曲线[img=90x26]18031aed85a91cf.png[/img]在点(1,3)处的切线方程为( ) A: [img=103x22]18031aed8d98022.png[/img] B: [img=103x22]18031aed95e7a56.png[/img] C: [img=103x22]18031aed9f120c3.png[/img] D: [img=103x22]18031aeda89ca8d.png[/img]
- 牛顿切线法求解方程f(x)=0的近似根,若初始值x0满足( ),则解的迭代数列一定收敛。 未知类型:{'options': ['', ' [img=103x22]17e0b8ca5bff434.jpg[/img]', ' [img=103x22]17e0b8ca663947e.jpg[/img]', ' [img=103x22]17e0b8ca70bc9c3.jpg[/img]'], 'type': 102}
- 考虑二元函数的下面四条性质,则有( )(1)f(x,y)在点[img=52x25]1803d3469e57b15.png[/img]处连续 (2)f(x,y)在点[img=52x25]1803d3469e57b15.png[/img]处两个偏导数连续(3)f(x,y)在点[img=52x25]1803d3469e57b15.png[/img]处可微 (4)f(x,y)在点[img=52x25]1803d3469e57b15.png[/img]处两个偏导数存在 A: [img=125x25]1803d346c03fe8a.png[/img] B: [img=125x25]1803d346c8da475.png[/img] C: [img=125x25]1803d346d101a9e.png[/img] D: [img=125x25]1803d346d9681c2.png[/img]
- 考虑二元函数的下面四条性质,则有( )(1)f(x,y)在点[img=52x25]1803d33f049b721.png[/img]处连续 (2)f(x,y)在点[img=52x25]1803d33f049b721.png[/img]处两个偏导数连续(3)f(x,y)在点[img=52x25]1803d33f049b721.png[/img]处可微 (4)f(x,y)在点[img=52x25]1803d33f049b721.png[/img]处两个偏导数存在 A: [img=125x25]1803d33f258c65d.png[/img] B: [img=125x25]1803d33f2f5d801.png[/img] C: [img=125x25]1803d33f3820bdb.png[/img] D: [img=125x25]1803d33f40873ef.png[/img]