不定积分$\int
\arcsin x \text{d}x=$( )
A: $x\sin x+\frac{1}{\sqrt{1-x^2}}+C$
B: $x\sin x+\sqrt{1-x^2}+C$
C: $x\arcsin x+\sqrt{1-x^2}+C$
D: $x\arcsin x-\sqrt{1-x^2}+C$
E: $x\arcsin x+\frac{1}{\sqrt{1-x^2}}+C$
F: 其他选项都不正确
\arcsin x \text{d}x=$( )
A: $x\sin x+\frac{1}{\sqrt{1-x^2}}+C$
B: $x\sin x+\sqrt{1-x^2}+C$
C: $x\arcsin x+\sqrt{1-x^2}+C$
D: $x\arcsin x-\sqrt{1-x^2}+C$
E: $x\arcsin x+\frac{1}{\sqrt{1-x^2}}+C$
F: 其他选项都不正确
举一反三
- 以下关系式中,正确的是( )。 A: $2\arctan x+\arcsin \frac{2x}{1+{{x}^{2}}}=\text{ }\!\!\pi\!\!\text{ }$,$|x|\ge 1$ B: $\arctan x=\arcsin \frac{x}{\sqrt{1+{{x}^{2}}}}+\frac{\text{ }\!\!\pi\!\!\text{ }}{2}$,$-\infty \lt x \lt \infty $ C: $\arcsin x+\arccos x=\frac{\text{ }\!\!\pi\!\!\text{ }}{2}$,$|x|\le 1$ D: $\arcsin x=\arctan \frac{x}{\sqrt{1-{{x}^{2}}}}-\frac{\text{ }\!\!\pi\!\!\text{ }}{2}$,$|x| \lt 1$
- 函数\(y = {\left( {\arcsin x} \right)^2}\)的导数为( ). A: \(2\arcsin x{1 \over {\sqrt {1 - {x^2}} }}\) B: \( - 2\arcsin x{1 \over {\sqrt {1 - {x^2}} }}\) C: \(2\arcsin x{1 \over {\sqrt {1 + {x^2}} }}\) D: \( - 2\arcsin x{1 \over {\sqrt {1 + {x^2}} }}\)
- 17e0b849b7d64bd.jpg,计算[img=19x34]17e0ab14a855463.jpg[/img]实验命令为(). A: syms x;f=diff(asinsqrt(x))f=1/2/x^(1/2)/(1-x)^(1/2) B: f=diff(asin(sqrt(x)))f=1/2/x^(1/2)/(1-x)^(1/2) C: syms x;diff(asin(sqrt(x)))f=1/2/x^(1/2)/(1-x)^(1/2)
- 17da42840675a6d.jpg,计算[img=19x34]17da4275482315f.jpg[/img]实验命令为(). A: syms x;f=diff(asinsqrt(x))f=1/2/x^(1/2)/(1-x)^(1/2) B: f=diff(asin(sqrt(x)))f=1/2/x^(1/2)/(1-x)^(1/2) C: syms x;diff(asin(sqrt(x)))f=1/2/x^(1/2)/(1-x)^(1/2)
- 函数\(y = \arcsin x\)的导数为( ). A: \( - {1 \over {\sqrt {1 + {x^2}} }}\) B: \({1 \over {\sqrt {1 + {x^2}} }}\) C: \({1 \over {\sqrt {1 - {x^2}} }}\) D: \( - {1 \over {\sqrt {1 - {x^2}} }}\)