以下关系式中,正确的是( )。
A: $2\arctan x+\arcsin \frac{2x}{1+{{x}^{2}}}=\text{ }\!\!\pi\!\!\text{ }$,$|x|\ge 1$
B: $\arctan x=\arcsin \frac{x}{\sqrt{1+{{x}^{2}}}}+\frac{\text{ }\!\!\pi\!\!\text{ }}{2}$,$-\infty \lt x \lt \infty $
C: $\arcsin x+\arccos x=\frac{\text{ }\!\!\pi\!\!\text{ }}{2}$,$|x|\le 1$
D: $\arcsin x=\arctan \frac{x}{\sqrt{1-{{x}^{2}}}}-\frac{\text{ }\!\!\pi\!\!\text{ }}{2}$,$|x| \lt 1$
A: $2\arctan x+\arcsin \frac{2x}{1+{{x}^{2}}}=\text{ }\!\!\pi\!\!\text{ }$,$|x|\ge 1$
B: $\arctan x=\arcsin \frac{x}{\sqrt{1+{{x}^{2}}}}+\frac{\text{ }\!\!\pi\!\!\text{ }}{2}$,$-\infty \lt x \lt \infty $
C: $\arcsin x+\arccos x=\frac{\text{ }\!\!\pi\!\!\text{ }}{2}$,$|x|\le 1$
D: $\arcsin x=\arctan \frac{x}{\sqrt{1-{{x}^{2}}}}-\frac{\text{ }\!\!\pi\!\!\text{ }}{2}$,$|x| \lt 1$
举一反三
- 不定积分$\int<br/>\arcsin x \text{d}x=$( ) A: $x\sin x+\frac{1}{\sqrt{1-x^2}}+C$ B: $x\sin x+\sqrt{1-x^2}+C$ C: $x\arcsin x+\sqrt{1-x^2}+C$ D: $x\arcsin x-\sqrt{1-x^2}+C$ E: $x\arcsin x+\frac{1}{\sqrt{1-x^2}}+C$ F: 其他选项都不正确
- 4.下列各对函数中,是同一函数的原函数的是( ). A: $\arctan x$与$\text{arccot}x$ B: ${{\text{e}}^{x}}$与$\frac{1}{2}{{\text{e}}^{2x}}$ C: $\frac{{{2}^{x}}}{\ln 2}$与${{2}^{x}}+\ln 2$ D: $\ln (2x)$与$\ln x$
- 函数$f(x)=\arcsin(\sin x)$的傅里叶级数展开式为 A: $x$ B: $$\frac{4}{\pi}\sum_{n=0}^{\infty}\frac{(-1)^n\sin(2n+1)x}{(2n+1)^2}$$ C: $$\frac{4}{\pi}\sum_{n=1}^{\infty}\frac{(-1)^n\sin(2n+1)x}{(2n+1)^2}$$ D: $$\frac{4}{\pi}\sum_{n=1}^{\infty}\frac{(-1)^{n-1}\sin(2n+1)x}{(2n+1)^2}$$
- 1.下列函数中,在定义域上无界的函数是 A: $f(x)=\frac{1}{x}\sin x$ B: $f(x)=x^2\sin \frac{1}{x}$ C: $f(x)=\frac{\ln x}{1+{{\ln }^{2}}x}$ D: $f(x)=\frac{1}{{{\text{e}}^{x}}+{{\text{e}}^{-x}}}$
- 6.下列函数中,在其定义域上有最大值的是()。 A: $f(x)=\frac{x}{{{\text{e}}^{x}}},\ \ \ x\in (0,+\infty )$ B: $f(x)=\frac{1}{{{\text{e}}^{x}}},\ \ \ x\in (0,+\infty )$ C: $f(x)=\frac{1}{{{\text{e}}^{x}}},\ \ \ x\in (0,1)$ D: $f(x)=\frac{1}{{{\text{e}}^{x}}},\ \ \ x\in (0,1]$