函数y=ln(x-1)的反函数是()
A: y=10x+1
B: y=e^x+1
C: y=10x-1
D: y=e^(-x)+1
A: y=10x+1
B: y=e^x+1
C: y=10x-1
D: y=e^(-x)+1
举一反三
- 函数\( y = {e^x} - 1 \)的反函数是( )。 A: \( y = \ln x + 1,x > 0 \) B: \( y = \ln (x + 1),x > - 1 \) C: \( y = \ln x - 1,x > 0 \) D: \( y = \ln (x - 1),x > 1 \)
- 曲线y=xln(e+1/x)(x>0)的渐近线为()。 A: x=1/e,y=x+1/e B: x=-1/e,y=x+1/e C: x=1/e,y=x-1/e D: x=-1/e,y=x-1/e
- 设\(z = {e^ { { y \over x}}} + {x^y} + {y^x}\),则\({z_x} = \) A: \({1 \over x}{e^ { { y \over x}}} + {x^y}\ln x + x{y^{x - 1}}\) B: \(- {y \over { { x^2}}}{e^ { { y \over x}}} + {x^y}\ln x + x{y^{x - 1}}\) C: \({e^ { { y \over x}}} + y{x^{y - 1}} + {y^x}\ln y\) D: \( - {y \over { { x^2}}}{e^ { { y \over x}}} + y{x^{y - 1}} + {y^x}\ln y\)
- 函数y=1-x2(x<0)的反函数为( ) A: y=1-x(x<1) B: y=-1-x(x≤1) C: y=-1-x(x<1) D: y=1-x(x≤1)
- 函数\(z = {x^y}\)的全微分为 A: \(dz = y{x^{y - 1}}dy + {x^y}\ln xdx\) B: \(dz = y{x^{y - 1}}dx + {x^y}dy\) C: \(dz = y{x^{y - 1}}dx + {x^y}\ln xdy\) D: \(dz = y{x^{y - 1}}dy + {x^y}dx\)