设 [tex=2.786x1.214]iQbgMqjoAzxOFWjVlhQ/IQ==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵,其中 [tex=5.571x1.143]v0X3nIUuCucSHH4emST003qPcfM/YciVTzpqsiD0M0g=[/tex] 又它们适合条件 [tex=7.929x1.214]Ruoaf4JcrGvs5e8cIX4RrEQovN3CRSiemWMjjv2GT90=[/tex], 求证: [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 的特征值全为零. 又若将条件减弱为 [tex=10.929x1.214]zUsPSmDrkv2NlanBV2R9DhmrV+KMHAKF2f7ElASRPvU=[/tex], 则上述结论不再成立.
举一反三
- 设 [tex=2.786x1.214]iQbgMqjoAzxOFWjVlhQ/IQ==[/tex] 都是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵, [tex=1.786x1.214]s/df2ZE+BhF7kkKI1Rb3ww==[/tex] 各有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 个不同的特征值, 又 [tex=1.857x1.357]16KT0+hXCf8wMIstCDilkg==[/tex]是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的特征多项式, 且 [tex=2.071x1.357]20lFRzgrG4cdjOfs4Ad43w==[/tex] 是可逆矩阵. 求证: 矩阵 [tex=6.929x2.786]gnJdtx18Gteda4cw1elCaw1rz7PGYBU/xDTd1JTsuspF7aiAA42OHoV6hWfd0gGeCfm3ufa2hbIwfH2qyHHz+O8XZbDcrmgiTrA5HwaAVIA=[/tex] 相似于对角矩阵.
- 设 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵, 求证: 存在 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=1.786x1.214]s/df2ZE+BhF7kkKI1Rb3ww==[/tex], 使 [tex=5.357x1.143]Wbhpk6fsBNi2qM8u+WL7eg==[/tex]的充要条件是 [tex=3.286x1.0]ApBtKiFHAOgbksEzlkUgQcH0xASBEp8gGImmCF1jAes=[/tex]
- 设 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 是数域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵集合到 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 的一个映射, 它满足下列条件:(1) 对任意的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=11.857x1.357]PyBoS3zBK0M8dFy5nc2BCQAjvq9LapSCVSEPLvCboCNL9Sf89YDDNJnh9P6XU+Xa[/tex](2) 对任意的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 和 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 中数 [tex=7.143x1.357]ZssA/FjDDGKlA7//o6lvBHjGIYzZWXwRor3cGphMPPA=[/tex](3) 对任意的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=9.071x1.357]CV7XimFyNvpshBoHaexhcrFdFwXW4pEFstEvGviliLE=[/tex](4) [tex=4.143x1.357]mTjc3HPxil5qpbqmEffFWqjszfkzs0w4AuinGz3AXRg=[/tex]求证: [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 就是迹, 即 [tex=4.714x1.357]abvMETy3K96uBRzmzh1OP8sPIldqFdFpE5NVrVc0Ciw=[/tex] 对一切 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 成立.
- 设 [tex=3.143x1.214]3gIdpTIyuAXNY2Pw89Jsdg==[/tex] 均为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵,且满足 [tex=4.071x1.214]v6+XAb7ReMobqW2BH2aYXA==[/tex] 则下列各式中哪些必定成立,理由是什么?(1) [tex=3.786x1.0]6cw1RuqJkBXFdulJ8v2ouA==[/tex](2) [tex=3.786x1.0]ulJ8FbACDzd3YjqXAnu12A==[/tex](3) [tex=3.786x1.0]N9UM5G9eNENvufQSHxB34Q==[/tex](4) [tex=3.786x1.0]uVwiB6kcTxJz2l3rWiCGtg==[/tex](5) [tex=3.786x1.0]gVZnpPNL6x3orzSkcv+qew==[/tex].
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶复矩阵且有特征值 0, 又 [tex=7.714x1.571]3QB+xXoceKqeE9zNEOsUGsIwI4B2wcW/+yNOhmDcuI2bLXTKMrW+2E54GXJCV8XxzVUM+YmMG8myO+HT7WEiRQ==[/tex] 求证: 若 [tex=1.286x1.0]3AU0woEHzN+p1wTQlAPzOQ==[/tex] 是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的一个初等 因子, 则 [tex=2.214x1.143]RgRElBnEGzqOgkduDaHZ5g==[/tex].