• 2022-06-19
    设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是一个群,[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]假设[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]的阶为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex], 证明 :对任意整数[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex], 有[tex=5.071x2.429]IMMODsngCeQoQMBbAl6sIyludYJFRDrf5oFv7wHEzuKXxYxxYkuofnY8PklswQV2[/tex]
  • 证明 令[tex=3.214x1.357]adP7vSusuCs7JWGZbDKUkJ6XYAHVrbeQ6iv53US8Arw=[/tex]由于[tex=2.5x1.357]l6ueSttxxIpqQwepESa+oA==[/tex], 根据命题[tex=3.071x1.214]zcHulsIwcRMSwYjbYgFf2w==[/tex]是有限循环群. 根据命题4. 2 ,[tex=5.071x2.429]IMMODsngCeQoQMBbAl6sIyludYJFRDrf5oFv7wHEzuKXxYxxYkuofnY8PklswQV2[/tex]

    举一反三

    内容

    • 0

      设群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]中的元素[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]的阶为[tex=0.929x0.786]lxK7J2TkjjIzWdTjZIk12Q==[/tex]证明:[tex=0.929x1.286]1Ohm5e+O5OZaoTLku48gmg==[/tex]的阶是[tex=0.786x1.786]B72Nti1Sv/dGKIFoBgmcaxeegbgC71GzcUdGryHKYDc=[/tex],其中[tex=3.571x1.357]nb3pWZwcxu7EJtphZbaicA==[/tex]是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]和[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]的最大公因子.

    • 1

      设 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 是群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]到群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的同构, 证明:对于任意的[tex=7.5x1.357]ZQMpGr73vEhlsV541O4Yx72mt1UE/SKg3FK8loX/zUI=[/tex] 举例说明, 若[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]是群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]到群 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的同态, 则[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]的阶与[tex=1.857x1.357]+oWS0hM0HogLU9xbRXppWQ==[/tex]的阶不一定相同. 

    • 2

      设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是一个[tex=1.143x1.0]cLn0Gr6CnaTTCPqvS7e1NQ==[/tex]阶有限交换群,其中[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]是一个奇数. 证明:[tex=0.786x1.0]JUr53aL1O6s9D+V6Y3g72w==[/tex]有且只有一个2阶子群.

    • 3

      证明:若群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶子群有且只有一个,则此子群必为[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的正规子群.

    • 4

      设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]和[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]分别是阶为[tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex]和[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]的有限循环群, 证明:存在 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]到[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的满同态的充要条件是[tex=1.786x1.357]VqYL4S8BsGk2Huh+On3/WA==[/tex].