举一反三
- 设群 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 中的元素 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 的阶为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex], 证明: 对于任意 [tex=2.643x1.214]0cVYxr9vOS4008SoQ64z7K5U3Sluqjf7ornR1de2PAk=[/tex], [tex=0.929x1.0]gBb4oMysZsKC851WOUp32w==[/tex]的阶是 [tex=2.571x2.429]MEN4zXFByHPoi/B5wkupZ1LFNL4Evk4GsC0+ZyhCWd0=[/tex], 其中 [tex=2.286x1.357]U4zNANCTqXCpkXXDXzi3aA==[/tex] 为 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 与 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 的最大公因数。
- 设群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]中元生[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]的阶为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex],证明:[tex=9.5x1.286]sR//uEXSFyFtsl0ffa3c03auSOyu9vm3TbYVRut0Q/WqGhmMSqplGf5uvm54NlCMMYz+k4vlrF0nvSs1WIHyhw==[/tex]
- 设 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]是群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]中一个阶为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]的元素. 证明:[tex=12.643x1.286]n1IP3yK+MCZrLTEr5EjJAZxrLDmns8eA83GW4hLvXDt9duPKpDYlWDbW1dgDchQzFv7AEJs1TcSCiOAPKQYQf73r3D86/XO36/XhLj47Vbkzdp/CSvUxl4/E9/HlWKdziUHjXhAvvxz0InqOPUR0xQ==[/tex]
- 设[tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex]是群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的有限子群, [tex=2.786x1.357]gGafzCAY5HUDydhqr4pyuw==[/tex].假设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]只有一个阶为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]的子群, 证明:[tex=0.857x1.0]h610M+sGyf59WggKwaDo1Q==[/tex]是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的正规子群.
- 设[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex] 为群, [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]中的 2 阶元,证明 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 中与[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]可交换的元素构成[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的子群.
内容
- 0
设群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]中的元素[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]的阶为[tex=0.929x0.786]lxK7J2TkjjIzWdTjZIk12Q==[/tex]证明:[tex=0.929x1.286]1Ohm5e+O5OZaoTLku48gmg==[/tex]的阶是[tex=0.786x1.786]B72Nti1Sv/dGKIFoBgmcaxeegbgC71GzcUdGryHKYDc=[/tex],其中[tex=3.571x1.357]nb3pWZwcxu7EJtphZbaicA==[/tex]是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]和[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex]的最大公因子.
- 1
设 [tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex] 是群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]到群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的同构, 证明:对于任意的[tex=7.5x1.357]ZQMpGr73vEhlsV541O4Yx72mt1UE/SKg3FK8loX/zUI=[/tex] 举例说明, 若[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]是群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]到群 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的同态, 则[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]的阶与[tex=1.857x1.357]+oWS0hM0HogLU9xbRXppWQ==[/tex]的阶不一定相同.
- 2
设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是一个[tex=1.143x1.0]cLn0Gr6CnaTTCPqvS7e1NQ==[/tex]阶有限交换群,其中[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]是一个奇数. 证明:[tex=0.786x1.0]JUr53aL1O6s9D+V6Y3g72w==[/tex]有且只有一个2阶子群.
- 3
证明:若群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶子群有且只有一个,则此子群必为[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的正规子群.
- 4
设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]和[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]分别是阶为[tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex]和[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]的有限循环群, 证明:存在 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]到[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的满同态的充要条件是[tex=1.786x1.357]VqYL4S8BsGk2Huh+On3/WA==[/tex].