设[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex] 为群, [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]中的 2 阶元,证明 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 中与[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]可交换的元素构成[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的子群.
举一反三
- 设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是由6个元素构成的循环群,[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的一个生成元,则[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]有______个子群,[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的生成元是______.
- 设群 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的每个元素 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]都满足 [tex=2.143x1.214]V+7/hfR5UbG151kRF33SMw==[/tex],则 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是交换群。
- 称群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]中元素[tex=3.786x1.214]sfy2nrDugnEJMhuNczpd9izk6oGEL5DbFUEdSVDltEM=[/tex]为元素[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]与[tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex]的换位元,证明:由 $G$ 中所有换位元生成的子群[tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex]是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的一个正规子群;
- 设[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex] 是群 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的非空子集。证明: [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 中与[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]的每个元素可交换的元素构成[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的子群。
- 设[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]是群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的一个元素。令[tex=7.071x1.357]duPa6DzdXEP/IkA8w22YsRIJpiApMOuc2tIiiX1utUBRndTamosI3MA8KgnaswoZaa+HIEQDLnt+rWDh28uFXg==[/tex]。证明[tex=1.357x1.357]UMu6yZaqu6lAbCVsfR7R0Gd4uDjR1gRFcqTenXrRKBI=[/tex]是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的一个子群,称为由[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]所生成的循环子群。特别地, 如果 [tex=2.929x1.357]R69oP1O5tGxNy/rzgfmU9zkgKJqJcKsevy1zqQYvMIw=[/tex],就称[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是由[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]生成的循环群。试各举出一个无限循环群和有限循环群的例子。