推广定理2到矩阵方程上,即证明:设给定矩阵[tex=3.643x1.214]USrgmNmEfxEBQ6LPH+RsDdd2/F7OLqNOCdPWFQ8eBgkAntBAY+LVIxxRhvj9RuyC[/tex],[tex=3.643x1.214]Q02NWefLGIAj33aeptsRoxW9tYKhAtCOPzVZDchyLjA=[/tex],而未知矩阵[tex=3.5x1.214]gavPiy82iOwNDqvxqbr2AvInhb3RdvvAnklsPccT21U=[/tex],则矩阵方程[tex=3.143x1.0]TfRL0Lu8PApzv7GgboFLtw==[/tex]有解的充分必要条件是[tex=8.714x1.357]uqh+oOvD2P9iqZ7dD7XO1Au5GpPM3U/ETOAOUQD4vNGJIlG2rC6N74CkHadtFKQAXlvaiagZTEl9+d8b3tkO1w==[/tex],其中[tex=2.786x1.357]HKLEU6G1QI7zaOP0O4tJ8w==[/tex]是矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]和[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]并排而成的矩阵。
举一反三
- 求解下列矩阵对策,其中赢得矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为$\left[\begin{array}{llll}2 & 7 & 2 & 1 \\ 2 & 2 & 3 & 4 \\ 3 & 5 & 4 & 4 \\ 2 & 3 & 1 & 6\end{array}\right]$
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是 3 阶矩阵,且[tex=2.643x1.357]h0pLE8vvleI3SS/lZLfCsw==[/tex],则[tex=4.143x1.357]TzVoItsLVWI00YVI4rvLQQ==[/tex]( ). 未知类型:{'options': ['2', '-2', '8', '-8'], 'type': 102}
- 设矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 相似, 其中[tex=8.643x3.643]3BT1BgBZQ5uJXxD5dg+w26muwh1xN1sRXO8Q3eF5f+iTpB6kD/3/7F/Sewwa3hxWs7TCQWFyZq0QSUW2LGcSxj3jay92Ev0sXUjwbpJxe2w84vpk6B1wjRlgxeXY7DUa[/tex], 已知矩阵 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]有特征值 1,2,3, 则 [tex=1.357x0.786]C5gMMrS05DsgTY0BSnf1fg==[/tex] A: 4 B: -3 C: -4 D: 3
- 证明定理(1)单位矩阵是正交矩阵;(2)两个正交矩阵的乘积是正交矩阵;(3)正交矩阵的逆矩阵是正交矩阵;(4)若[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是正交矩阵,则[tex=3.857x1.357]sJY8tRid7wbV3Z5twsnxVw==[/tex].
- 已知三阶矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值为 1,-1,2,设矩阵[tex=5.143x1.357]GXZk0g8n9F5fV4GyCGm9mygQSr4Yd8XrtrSrBIW9ziE=[/tex] .(1) 试求矩阵[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]的特征值; (2) 问矩阵[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]是否可以对角化,说明理由,如果[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]可以对角化,指出与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]相似的对角矩阵.