举一反三
- 求解下列矩阵对策,其中赢得矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为$\left[\begin{array}{llll}2 & 7 & 2 & 1 \\ 2 & 2 & 3 & 4 \\ 3 & 5 & 4 & 4 \\ 2 & 3 & 1 & 6\end{array}\right]$
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是 3 阶矩阵,且[tex=2.643x1.357]h0pLE8vvleI3SS/lZLfCsw==[/tex],则[tex=4.143x1.357]TzVoItsLVWI00YVI4rvLQQ==[/tex]( ). 未知类型:{'options': ['2', '-2', '8', '-8'], 'type': 102}
- 设矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 相似, 其中[tex=8.643x3.643]3BT1BgBZQ5uJXxD5dg+w26muwh1xN1sRXO8Q3eF5f+iTpB6kD/3/7F/Sewwa3hxWs7TCQWFyZq0QSUW2LGcSxj3jay92Ev0sXUjwbpJxe2w84vpk6B1wjRlgxeXY7DUa[/tex], 已知矩阵 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]有特征值 1,2,3, 则 [tex=1.357x0.786]C5gMMrS05DsgTY0BSnf1fg==[/tex] A: 4 B: -3 C: -4 D: 3
- 证明定理(1)单位矩阵是正交矩阵;(2)两个正交矩阵的乘积是正交矩阵;(3)正交矩阵的逆矩阵是正交矩阵;(4)若[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是正交矩阵,则[tex=3.857x1.357]sJY8tRid7wbV3Z5twsnxVw==[/tex].
- 已知三阶矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值为 1,-1,2,设矩阵[tex=5.143x1.357]GXZk0g8n9F5fV4GyCGm9mygQSr4Yd8XrtrSrBIW9ziE=[/tex] .(1) 试求矩阵[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]的特征值; (2) 问矩阵[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]是否可以对角化,说明理由,如果[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]可以对角化,指出与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]相似的对角矩阵.
内容
- 0
已知 3 阶矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值为 0,-2,3,且矩阵[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]与[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]相似,则[tex=4.643x1.357]/AnguSGMpt5KutuBHaXS+w==[/tex][input=type:blank,size:4][/input]。
- 1
设3阶矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值为-2, -1, 3,矩阵[tex=6.786x1.357]5sQBSCH1+oEoQda8DcapHw==[/tex],求矩阵[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]的行列式[tex=1.357x1.357]JRr5OoiiAPF9KB2ukKJtuw==[/tex]
- 2
已知[tex=1.786x1.214]IENxQEh5u4RdnCaqHm72Xg==[/tex]为3阶矩阵,且[tex=6.5x1.357]Xw38Dcvrbs7IEKOZRvkd5g==[/tex],其中[tex=0.786x1.0]XvHgf70VtK2FH5G93l0k3g==[/tex]是3阶单位矩阵.(1)证明:矩阵[tex=2.786x1.143]RcZ2ZRIlzxNTbD8lUHAX+Q==[/tex]可逆;(2)若[tex=7.786x3.5]DgXZT9CtCPAglTYwc4pEdVwGPrEvfplbNSz07f1CHm3lKZFzRkIi88nqRWCa7cdxtDn1Uq6Au4bDH+3NSK9+pGWuIrunnKgMXUiXxap7tYqS5e4P0ZLrWW76zZyDl/um[/tex],求矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]
- 3
二阶实正规矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 不是对称矩阵, 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是正交矩阵的充要条件是 未知类型:{'options': ['[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0的行列式值等于 1', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0的行列式值等于 -1', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0是可逆矩阵', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0是奇异矩阵'], 'type': 102}
- 4
设[tex=9.357x3.643]QN0fTQbn6M33pU3gx/S2shFzvXJob3IOOSqx/0F5epuU662GpcBEF5cu61RENz4uyutLiD2e70XVgXM6ptliBx2TkKz4IlHMjYGYQXDVqkmm4eBMmGssz7bFOofj3lVX[/tex],[tex=7.714x2.786]DgXZT9CtCPAglTYwc4pEdcNlcnUIF+BrRKWBao1p88XOv8dvbR6O1cAN14sUaO/Wcb15HFrZpDe07VNdgft9gc8CQeFx1/vusTp1t8fBWcI=[/tex]满足矩阵方程[tex=3.143x1.0]XnDGp2Hw+MpCu8i/Zy+ELg==[/tex](1) 求[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的逆矩阵[tex=1.714x1.214]U68gBJ5WJ348ks0iIqWsqQ==[/tex] ;(2)求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex].