设f(x), g(x), u(x), v(x), d(x)是F上多项式,f(x)u(x)+g(x) v(x)=d(x)且d(x)首项系数为1,则(f(x), g(x))=d(x)。
举一反三
- 中国大学MOOC:设f(x),g(x),u(x),v(x),d(x)是F上多项式,f(x)u(x)+g(x)v(x)=d(x)且d(x)首项系数为1,则(f(x),g(x))=d(x)。
- 在F[x]中,任一对多项式f(x)与g(x)都有最大公因式,且存在u(x),v(x)∈F(x),满足哪个等式?() A: u(x)f(x)v(x)g(x)=d(x) B: u(x)f(x)+v(x)g(x)=d(x) C: u(x)f(x)/v(x)g(x)=d(x) D: u(x)/f(x)+v(x)/g(x)=d(x)
- 设f(x),g(x),h(x)是数域P上的一元多项式,若f(x)∣g(x)且f(x)∣h(x),则下列说法不正确的是 A: f(x)∣(g(x)+h(x)) B: f(x)∣g(x)h(x) C: g(x)∣h(x) D: f(x)∣(u(x)g(x)+v(x)h(x))(其中u(x),v(x)为数域P上的多项式)
- 若(f(x),g(x))=1存在u(x),v(x)∈F[x],那么u(x)f(x)v(x)g(x)等于多少
- 设$f(x),g(x),h(x)$是三个实系数多项式,且$$f^{2}(x)=xg^{2}(x)+xh^{2}(x)$$则$f(x),g(x),h(x)$满足条件()。 A: $f(x)=g(x),f(x)\not=h(x)$; B: $f(x)=g(x)=h(x)=0$; C: $f(x)\not=g(x),g(x)\not=h(x)$; D: $f(x)\not=g(x),g(x)=h(x)$.