在F[x]中,任一对多项式f(x)与g(x)都有最大公因式,且存在u(x),v(x)∈F(x),满足哪个等式?()
A: u(x)f(x)v(x)g(x)=d(x)
B: u(x)f(x)+v(x)g(x)=d(x)
C: u(x)f(x)/v(x)g(x)=d(x)
D: u(x)/f(x)+v(x)/g(x)=d(x)
A: u(x)f(x)v(x)g(x)=d(x)
B: u(x)f(x)+v(x)g(x)=d(x)
C: u(x)f(x)/v(x)g(x)=d(x)
D: u(x)/f(x)+v(x)/g(x)=d(x)
B
举一反三
- 在F[x]中,任一对多项式f(x)与g(x)都有最大公因式,且存在u(x),v(x)∈F(x),满足()。
- 若(f(x),g(x))=1存在u(x),v(x)∈F[x],那么u(x)f(x)v(x)g(x)等于多少
- 设f(x), g(x), u(x), v(x), d(x)是F上多项式,f(x)u(x)+g(x) v(x)=d(x)且d(x)首项系数为1,则(f(x), g(x))=d(x)。
- 中国大学MOOC:设f(x),g(x),u(x),v(x),d(x)是F上多项式,f(x)u(x)+g(x)v(x)=d(x)且d(x)首项系数为1,则(f(x),g(x))=d(x)。
- 若(f(x),g(x))=1存在u(x),v(x)∈F[x],那么u(x)f(x)+v(x)g(x)等于多少?() A: 0 B: 任意常数 C: 1 D: 无法确定
内容
- 0
设f(x),g(x),h(x)是数域P上的一元多项式,若f(x)∣g(x)且f(x)∣h(x),则下列说法不正确的是 A: f(x)∣(g(x)+h(x)) B: f(x)∣g(x)h(x) C: g(x)∣h(x) D: f(x)∣(u(x)g(x)+v(x)h(x))(其中u(x),v(x)为数域P上的多项式)
- 1
“在F[x]中,任一对多项式f(x)与g(x)都有最大公因式,且存在u(x)
- 2
设g(x),f(x)∈F[x],存在d(x)∈F[x],有d(x)|f(x)且d(x)|g(x),那么称d(x)为f(x),g(x)的什么?() A: 公因式 B: 最大公因式 C: 最小公因式 D: 共用函数
- 3
设g(x),f(x)∈F[x],存在d(x)∈F[x],有d(x)|f(x)且d(x)|g(x),那么称d(x)为f(x),g(x)的()。 A: 共用函数 B: 最小公因式 C: 最大公因式 D: 公因式
- 4
设f(x)=sinx,g(x)=cosx,则在[0,π/4]上有[]. A: f(x)≥g(x),fˊ(x)>gˊ(x) B: f(x)≥g(x),fˊ(x)<gˊ(x) C: F(X)≤g(x),fˊ(x)>gˊ(x) D: f(x)≤g(x),fˊ(x)<gˊ(x)