若[tex=1.786x1.357]5GXDBi3fRz6I6Au55YSUHw==[/tex]在[tex=2.857x1.357]rpSdreFZYpbfnJEPVw2UOg==[/tex] 上解析且 [tex=4.143x1.357]NVYn0v7u/Vwp2lYI+lzoOw==[/tex] ,试问方程[tex=3.0x1.357]/pqHwUArTavIJJ0A5C4jxA==[/tex] 在[tex=2.857x1.357]9Mp6NtTOllagZJ7zLzgTJQ==[/tex]内有几个根.
举一反三
- 若 [tex=14.143x1.357]fT4e9EekZ8xwKPJ1h2CXvI8pbzkU99RyTduXRMCBQPKAxXcYFOWKjYHD924tWqYtR1Vyf8uhoZNmcup4ljbVdQ==[/tex], 且[p=align:center][tex=8.071x3.286]hp6HB/EAr1mK1bQ7SwF2s8xtHo7+VRQ15MCxjm5ffryI1bcFhWD8lzKIfGXHcS7ONdLPe5pMpaFrJhkBHDNCtYi2u6CXaGOBIMc6VgfseoM=[/tex]则方程 [tex=3.0x1.357]uLIQv61hJggtdVKfEpjs8w==[/tex] 在圆 [tex=2.857x1.357]9Mp6NtTOllagZJ7zLzgTJQ==[/tex] 内有 [tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个根; 若 [tex=2.857x1.357]JG9AK9JW9z9g5EoNLndMUA==[/tex], 则方程 [tex=3.0x1.357]uLIQv61hJggtdVKfEpjs8w==[/tex] 在圆 [tex=2.857x1.357]775e4ifRSs1IcO1KxBxfaw==[/tex] 内恰有 [tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex] 个根。
- 已知解析函数[tex=1.786x1.357]5GXDBi3fRz6I6Au55YSUHw==[/tex]的实部[tex=2.857x1.357]oni5YFYZg9r1D8AXbqLQGA==[/tex]或虚部[tex=2.786x1.357]dal2CT/ildxtMhXRn1xYUQ==[/tex],求该解析函数[tex=6.571x1.357]66ZmWVDc2hex8l0rUTrfKqYEcHeP7w7GqmQ9GkwaJKY=[/tex]
- 当x→0时,[tex=2.857x1.357]P+rB9N1hnHYgKiRVAfwjNw==[/tex]与[tex=2.714x1.357]QsZioew6o+q9nmM1dnwchw==[/tex]相比,哪一个是高阶无穷小?
- 判断下列命题是否为真:(1)[tex=3.643x1.357]/5abqJjwKZ1qr+6hsVFF5EBvfq3ggOFNlHMClz0h9nk=[/tex](2)[tex=2.929x1.357]rGJpyjIjJpbcoBTWxP0Jiw==[/tex](3)[tex=4.5x1.357]2wycHMoqU83MyEp17iBils58bR7YLuCTI2G9NVAdlfY=[/tex](4)[tex=5.214x1.357]CTz2gu+IIm1GgNmYMGaduCRtA41wnW4WqwRWwEhq6aA=[/tex](5)[tex=4.857x1.357]1DcE2BMMOaZhTuxR/mjgsboXxfg5ET59Dp4I/jjEDuw=[/tex](6)[tex=4.643x1.357]BSryrsQYOvTP2hTWRu6t4nAuJwlSs4L9jaq70EpB+Us=[/tex](7)若[tex=6.0x1.357]y0IZLUnBO88nR8WBZYvd7QXv5S1OMINV5cQNzPyiyAc=[/tex],则[tex=3.429x1.357]1brfPwTkVVIX4GfoMIUskA==[/tex](8)若[tex=7.643x1.357]MhLfJXZnhbXiB0x3oNtFzThV4Y1mJxe1VYr7PkJE/T6hmTD3WWp+UxbNwvUQ6DHk[/tex],则[tex=4.143x1.357]LZUA94ISo1po5HWsOVeBCjo0rMvj7uw3bGw5HiZenrI=[/tex]
- 若[tex=1.786x1.357]5GXDBi3fRz6I6Au55YSUHw==[/tex]在全平面解析,证明:[tex=2.286x0.786]b8ch37HrlYDNLqp5Pz3ihA==[/tex]为[tex=1.786x1.357]5GXDBi3fRz6I6Au55YSUHw==[/tex]可去奇点[tex=4.071x1.357]y8LuSm71q2LpxnLwWvR1b6Tiq+zkAXZIZMWOTrCNfW8=[/tex]常数.