证明:一个非零复数[tex=0.643x0.786]hlJJ6/DUY+n2/FE6M2JdRA==[/tex]是某一有理系数非零多项式的根必要而且只要存在一个有理系数多项式[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex],使得[tex=3.786x2.357]hk8Bw3+KTf5OnmZI9wk5ZtaP1jfWLDbtHdDdToooP2M=[/tex]。
举一反三
- 设 [tex=0.643x0.786]dFKQavWFzybe6S1GPVXNhQ==[/tex] 是复数域中某个数, 若 [tex=0.643x0.786]dFKQavWFzybe6S1GPVXNhQ==[/tex] 适合某个非零有理系数多项式 (或整系 数多项式) [tex=16.857x1.5]84e4VDcMQizbuEhyUYGO0BbQ3hSgwsxqFxv3TKY6B/83ClKlN986xEwarJDnUpXcRmDYVKafDemmqfBPM8vgsw==[/tex], 则称 [tex=0.643x0.786]dFKQavWFzybe6S1GPVXNhQ==[/tex] 是一个代数数. 证明:对任一代数数 [tex=0.643x0.786]dFKQavWFzybe6S1GPVXNhQ==[/tex], 存在唯一一个 [tex=0.643x0.786]dFKQavWFzybe6S1GPVXNhQ==[/tex] 适合的首一有理系数多项式 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex], 使得 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 是 [tex=0.643x0.786]dFKQavWFzybe6S1GPVXNhQ==[/tex] 适合的所有非零有理系数多项式中次数最小者. 这样的 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 称为 [tex=0.643x0.786]dFKQavWFzybe6S1GPVXNhQ==[/tex] 的极小多项式或最小多项式.
- 设 [tex=0.643x0.786]dFKQavWFzybe6S1GPVXNhQ==[/tex] 是复数域中某个数, 若 [tex=0.643x0.786]dFKQavWFzybe6S1GPVXNhQ==[/tex] 适合某个非零有理系数多项式 (或整系 数多项式) [tex=16.857x1.5]84e4VDcMQizbuEhyUYGO0BbQ3hSgwsxqFxv3TKY6B/83ClKlN986xEwarJDnUpXcRmDYVKafDemmqfBPM8vgsw==[/tex], 则称 [tex=0.643x0.786]dFKQavWFzybe6S1GPVXNhQ==[/tex] 是一个代数数. 证明:设 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 是一个 [tex=0.643x0.786]dFKQavWFzybe6S1GPVXNhQ==[/tex] 适合的首一有理系数多项式, 则 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 是 [tex=0.643x0.786]dFKQavWFzybe6S1GPVXNhQ==[/tex] 的极小多项式的充要条件是 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 是有理数域上的不可约多项式.
- 令[tex=0.5x0.786]EL0hSqs6jZBGdsmH7TMShQ==[/tex]是一个复数,并且是[tex=1.929x1.357]wgb9HHv6MasyQfi5ab09FA==[/tex]中一个非零多项式的根.令[tex=10.571x1.357]1da1HneIrbcfGBMEXUjlzwZuqegqk2adgPFETV3TppQou+06Gy7iHJ88MOUK7949[/tex]证明:在[tex=0.571x1.0]qmbwF4Pp2sLBvOFTeKQ/mA==[/tex]中存在唯一的最高次项系数是1的多项式[tex=1.857x1.357]QF8vxZyGYgv0Fua83iwDhg==[/tex],使得[tex=0.571x1.0]qmbwF4Pp2sLBvOFTeKQ/mA==[/tex]中每一多项式[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]都可以写成[tex=3.714x1.357]dQTS1Q95POqkqYlmyVi5qw==[/tex]的形式,这里[tex=4.429x1.357]u45nlbNHvvjTvkzJOG/BEdCrl3NqV6kzGAziAmlXqUs=[/tex]
- 设非零的实系数多项式[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]满足[tex=5.857x1.571]xuo/caF7g1JxzO9tAsH5V+Z5aGTPk3h4SrnQbNH+GYU=[/tex],求多项式[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]。
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是实系数首一多项式且无实数根, 求证: [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 可以表示为两 个实系数多项式的平方和.