有命题如下:任意实数x,总存在实数y,使得y[x成立。设:
A: "x"y(F(x) ÙF(y) ®G(y,x))
B: "x$y(F(x) ÙF(y) ®G(y,x))
C: "x (F(x) Ù$y(F(y) ®G(y,x)))
D: "x$y (F(x) ® (F(y) ÙG(y,x)))
A: "x"y(F(x) ÙF(y) ®G(y,x))
B: "x$y(F(x) ÙF(y) ®G(y,x))
C: "x (F(x) Ù$y(F(y) ®G(y,x)))
D: "x$y (F(x) ® (F(y) ÙG(y,x)))
举一反三
- 以下哪项是前束范式 A: "x"y(F(x) ÙF(y) ®G(y,x)) B: "x (F(x) Ù$y(F(y) ®G(y,x))) C: "x (F(x) Ù F(y) ®$y G(y,x)) D: "x (F(x) Ù "y F(y) ® G(y,x))
- 设F(x):x是汽车, G(y):y是火车, H(x,y):x比y快。那么命题“所有的汽车都比所有的火车快”符号化( ) A: "x"y(F(x)ÙG(y)®H(x,y)) B: "x"y(F(x)ÙG(y)ÙH(x,y)) C: $x$y(F(x)ÙG(y)ÙØH(x,y)) D: $x$y(F(x)ÙG(y)®ØH(x,y))
- 设F(x):x是学生,G(x):x是体育运动,H(x,y):x喜欢y。命题“所有学生都喜欢某种体育运动”的符号化公式是().(5.0) A: ∃y(G(y)→∀x(F(x)∧H(x,y))) B: ∀x(F(x)→∃y(G(y)∧H(x,y))) C: ∀x∃y(G(y)→(F(x)∧H(x,y))) D: ∃y(G(y)→∀x(F(x)→H(x,y)))
- 谓词公式("x)F(x) Þ ("x)G(x)的前束范式是( ) A: ("x)("y) (F(x) Þ G(y)) B: ($x)("y)(F(x) Þ G(y)) C: ("x)($y) (F(x) Þ G(y)) D: ($x)($y)(F(x) Þ G(y))
- Ø"xF(x)® $yG(y)的前束范式是( ) A: "x$y(Ø F(x) ® G(y)) B: "x"y(Ø F(x) ® G(y)) C: $x"y(Ø F(x) ® G(y)) D: $x$y(Ø F(x) ® G(y))