举一反三
- 设曲线 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex]上任一点 [tex=2.929x1.357]25jAdQ4EVKhlk22U111yAg==[/tex] 满足 [tex=4.357x1.214]LNDW8j7QgtFNvrPd5Ot3Cg==[/tex], 其中点 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 为曲线在点 [tex=1.0x1.0]h30MGzl4YMzpZdtHWcz0bA==[/tex]处的切线与 [tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex] 轴的交点,点 [tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex] 为点 [tex=0.643x1.0]WUJ/JHItsc3Bqx1WYNJcrg==[/tex] 在 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴上的投影点. 已知 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 过点 [tex=2.286x1.357]/a/vJiIC3Rr22SylXe49cg==[/tex]. 求曲线 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 的方程.
- 有一下凸曲线 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 位于 [tex=1.857x1.214]8v+QaGH4dkCVbzRhgAvkuw==[/tex] 面的上半平面内, [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 上任一点 [tex=1.0x1.0]0KCelhZna0R9EGhYF1VZHA==[/tex] 处的法线与 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴相交,其交点记为 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]. 如果点 [tex=1.0x1.0]0KCelhZna0R9EGhYF1VZHA==[/tex] 处的曲率半径始终等于线段 [tex=1.786x1.0]4QChT+OrRCvh30Oeh1U+xA==[/tex] 之长,并且 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 在点 [tex=2.286x1.357]OfHxxUhJ2mtIjsaijINmaA==[/tex] 处的切线与 [tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex] 轴垂直, 试求 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 的方程.
- 设曲线 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 的极坐标方程为 [tex=3.286x1.357]fs6E6r7hXTB0SW4gdQIrm+MdniQPjpT6x8Epb+Mgv1I=[/tex], [tex=3.429x1.357]kLIyN4EiceQd1pMgFf9UFa8qHPAlIj3V26oqZuff2mk=[/tex] 为 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 上任一点, [tex=3.5x1.286]5akrPvz7zF+dNwkFbG/eqw==[/tex] 为 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 上一定点. 若极径 [tex=4.286x1.214]iaeGJipp/TKSKtfqD8/GGg==[/tex] 与曲线所围成的曲边扇形面积值等于 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 上 [tex=2.929x1.286]iIhlDzlXCdttneE+RoOTaA==[/tex] 两点间弧长值 的一半,求曲线 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 的方程.
- 设 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴正方向到方向 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 的转角为 [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex], 求函数[tex=8.071x1.5]/sT/AbKDQ8781LFnllHoOZo3vVkWfzSCynygzWNL8Es=[/tex]在点 [tex=2.143x1.286]OGI1nc8WH38NKUnYUafisA==[/tex] 处沿方向 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 的方向导数,并分别确定转角 [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex],使这导数 有(1)最大值;(2)最小值;(3)等于 0 .
- 设 [tex=1.357x1.214]Q7WXLOhvo09xid4BEaFURA==[/tex] 是直线 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 外的一点,[tex=1.071x1.286]/vZEgalrrOYkhzS9SMg+fg==[/tex] 是直线 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 上的任意一点,且直线 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 的方向向量为 [tex=0.786x0.786]qM8MPL7iFf/u7LzYV81hmw==[/tex] 证明点 [tex=1.357x1.214]Q7WXLOhvo09xid4BEaFURA==[/tex] 到直线 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 的距离为[tex=8.143x2.143]15rCPpS3IZj1e/SFhCnZJqxRq/XNWrBVU0G4a9qZUFMYGGkXqWFbjWqP5/DVYVfrUdbAfb6RTn5BRER8f3hCSg==[/tex].
内容
- 0
直线 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 通过点 [tex=4.714x1.357]qHVZtWTfd69zTSE/gRu6Og==[/tex] 和点 [tex=4.714x1.357]GGVcZXncueqAJgGEDfvLzg==[/tex], 求点 [tex=5.5x1.357]NYnZYc10XybaHDDFZbHnRrz38bClL5A0XqgSStUiVR0=[/tex] 到直线 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 的距离 [tex=0.571x1.0]QDHYLzpRIwhOrWBqGonCgg==[/tex].
- 1
设点[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]分线段[tex=1.571x1.0]JLMbVw4e37VvhkU494+8Ew==[/tex]成5:2,点[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的坐标为[tex=3.214x1.357]T5eFhnPu0rsIoQnWYaiYKg==[/tex],点[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]坐标为[tex=3.214x1.357]zTAzSgXh1TiduADsLhWXzg==[/tex],求点[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]的坐标。
- 2
设[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]表示平面上所有点组成的集合. [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex]是一条直线, 把平面上每个点[tex=2.929x1.357]25jAdQ4EVKhlk22U111yAg==[/tex]对应到它关于[tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex]的对称点[tex=4.286x1.429]3CDu7omM9SsMJ8a63Ne6Y60SHCxJD1Tq3Vct3/euMOX4pf0SgcUu+RRQRDpgfBq9ftmUJJGpXWaQs0kBYEfEXQ==[/tex]这是[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]到自身的一个变换, 称为关于直线[tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex]的反射, 称[tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex]是反射轴. 求出平面关于直线 [tex=1.857x1.0]iCWMESxH27wos2YIzODARQ==[/tex]的反射公式.
- 3
已知生产函数为[tex=4.571x1.5]Zwz5/0SAnySJMubCPLxV1A==[/tex] 其中[tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex]为产出, [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex]为资本是, [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex]为劳动投入量。如果当[tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex]=10 时,投入组合为[tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex]=20, [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex]=5, 请分别算出在该点的 [tex=2.143x1.214]qCjezVQhfqt9OES3dsrOQg==[/tex]。
- 4
已知生产函数为[tex=4.571x1.5]Zwz5/0SAnySJMubCPLxV1A==[/tex] 其中[tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex]为产出, [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex]为资本是, [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex]为劳动投入量。如果当[tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex]=10 时,投入组合为[tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex]=20, [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex]=5, 请分别算出在该点的[tex=2.214x1.214]sVYcclGJp2c6iN3QvPYBTQ==[/tex]。