设曲线 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 的极坐标方程为 [tex=3.286x1.357]fs6E6r7hXTB0SW4gdQIrm+MdniQPjpT6x8Epb+Mgv1I=[/tex], [tex=3.429x1.357]kLIyN4EiceQd1pMgFf9UFa8qHPAlIj3V26oqZuff2mk=[/tex] 为 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 上任一点, [tex=3.5x1.286]5akrPvz7zF+dNwkFbG/eqw==[/tex] 为 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 上一定点. 若极径 [tex=4.286x1.214]iaeGJipp/TKSKtfqD8/GGg==[/tex] 与曲线所围成的曲边扇形面积值等于 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 上 [tex=2.929x1.286]iIhlDzlXCdttneE+RoOTaA==[/tex] 两点间弧长值 的一半,求曲线 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 的方程.
举一反三
- 曲线 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 是一条平面曲线,其上任意一点 [tex=6.143x1.357]yuQVB4s2ZaTxXH98rOGLUw==[/tex] 到坐标原点的距离恒等于曲线 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 在该 点切线在[tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex] 轴上的截距,且 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 经过点 [tex=3.786x2.786]5ipjI0CM2ngAbGND1jDprBsSv0zYtRNfPJ0h3rsEYYo=[/tex](1) 试求曲线 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex]的方程;(2) 求[tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 位于第一象限部分的一条切线,使该切线与 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 以及两坐标轴所围图形的面积最小.
- 设曲线 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex]上任一点 [tex=2.929x1.357]25jAdQ4EVKhlk22U111yAg==[/tex] 满足 [tex=4.357x1.214]LNDW8j7QgtFNvrPd5Ot3Cg==[/tex], 其中点 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 为曲线在点 [tex=1.0x1.0]h30MGzl4YMzpZdtHWcz0bA==[/tex]处的切线与 [tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex] 轴的交点,点 [tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex] 为点 [tex=0.643x1.0]WUJ/JHItsc3Bqx1WYNJcrg==[/tex] 在 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴上的投影点. 已知 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 过点 [tex=2.286x1.357]/a/vJiIC3Rr22SylXe49cg==[/tex]. 求曲线 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 的方程.
- 设 [tex=1.357x1.214]Q7WXLOhvo09xid4BEaFURA==[/tex] 是直线 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 外的一点,[tex=1.071x1.286]/vZEgalrrOYkhzS9SMg+fg==[/tex] 是直线 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 上的任意一点,且直线 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 的方向向量为 [tex=0.786x0.786]qM8MPL7iFf/u7LzYV81hmw==[/tex] 证明点 [tex=1.357x1.214]Q7WXLOhvo09xid4BEaFURA==[/tex] 到直线 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 的距离为[tex=8.143x2.143]15rCPpS3IZj1e/SFhCnZJqxRq/XNWrBVU0G4a9qZUFMYGGkXqWFbjWqP5/DVYVfrUdbAfb6RTn5BRER8f3hCSg==[/tex].
- 有一下凸曲线 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 位于 [tex=1.857x1.214]8v+QaGH4dkCVbzRhgAvkuw==[/tex] 面的上半平面内, [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 上任一点 [tex=1.0x1.0]0KCelhZna0R9EGhYF1VZHA==[/tex] 处的法线与 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴相交,其交点记为 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]. 如果点 [tex=1.0x1.0]0KCelhZna0R9EGhYF1VZHA==[/tex] 处的曲率半径始终等于线段 [tex=1.786x1.0]4QChT+OrRCvh30Oeh1U+xA==[/tex] 之长,并且 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 在点 [tex=2.286x1.357]OfHxxUhJ2mtIjsaijINmaA==[/tex] 处的切线与 [tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex] 轴垂直, 试求 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 的方程.
- 闭曲线积分[tex=14.5x2.643]MZrdpIFR46WZoToJcoQ49EfPVbwZYTZKk0puGREV/KVIHiC0nPDhRYOJyxJnan31C5qTh1NEUNnBXIRUWtjYODNH+FyokgtoYDgkvAKY8HI=[/tex] 取最大值时([tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex]为它所围区域的正向边界),曲线[tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex]的方程为[input=type:blank,size:6][/input]