由y=1/x,y=4x,y=0,x=2所围成图形绕x轴旋转成的旋转体体积
A: [img=31x43]1803c3ea995b2c8.png[/img]
B: [img=22x43]1803c3eaa1814e8.png[/img]
C: [img=22x43]1803c3eaa99c745.png[/img]
D: [img=31x43]1803c3eab1fc82b.png[/img]
A: [img=31x43]1803c3ea995b2c8.png[/img]
B: [img=22x43]1803c3eaa1814e8.png[/img]
C: [img=22x43]1803c3eaa99c745.png[/img]
D: [img=31x43]1803c3eab1fc82b.png[/img]
举一反三
- 由y=1/x,y=4x,y=0,x=2所围成图形绕x轴旋转成的旋转体体积 A: [img=31x43]1803c4137ccd13d.png[/img] B: [img=22x43]1803c4138458ff1.png[/img] C: [img=22x43]1803c4138c13df6.png[/img] D: [img=31x43]1803c41393e9fa9.png[/img]
- 应用Matlab软件计算行列式[img=110x88]17da5d7b00219d6.png[/img]为( ). A: x^2 - 6*x^2*y^2 + 8*x*y^3 - 3*y^4 B: x^3 - 6*x^2*y^2 + 8*x*y^3 - 3*y^4 C: x^4 - 6*x^2*y^2 + 8*x*y^3 - 3*y^4 D: x^5- 6*x^2*y^2 + 8*x*y^3 - 3*y^4
- 设曲线y=y(x)满足xdy+(x-2y)dx=0,且y=y(x)与直线x=1及x轴所围成的平面图形绕x轴旋转的旋转体积最小,则y(x)= A: [img=61x43]1802fb22da22c02.png[/img] B: [img=61x43]1802fb22e260f78.png[/img] C: [img=55x43]1802fb22eb6f8a2.png[/img] D: [img=55x43]1802fb22f43897e.png[/img]
- 设三阶方阵[img=117x75]17da6265af67565.png[/img]有特征值[img=36x21]17da6265c0f8ef3.png[/img],则[img=26x15]17da6265d451088.png[/img] ,[img=27x17]17da5b7f743dcc3.png[/img] . A: x=1, y=1 B: x=2, y=1 C: x=3, y=0 D: x=0, y=3
- 请将[img=111x25]17de91575ad9932.png[/img]写成程序表达的形式: A: y = (x - 1)(x + 3) B: y = (x - 1) * (x + 3) C: y = (x - 1) x (x + 3) D: y = (x - 1) . (x + 3)