举一反三
- 设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]对一切实数[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]满足微分方程[tex=11.786x1.571]k0UreDf08LXfdKLBpePCpqitGDSeSRW7TfozM3pl0Fnv3YRnVYH9xKI6xlm0j9t/etYgNAXem11UB99FAqxz78L2Rcre1LIZDMrK7YlvENA=[/tex],且[tex=2.429x1.429]79SmwT+8J9VTqKDgDEyFqyq/RV3jccSxj4F/gfqSdMY=[/tex]在[tex=1.857x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]处连续,试证(1)若[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在点[tex=3.714x1.214]O1wR5EdmD4D6tSurboI5HQ==[/tex]处有极值,则该极值为极小值;(2)若[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在点[tex=1.857x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]处有极值,问该极值是极大还是极小?
- 设函数对一切实数 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 满足 [tex=13.286x1.571]k0UreDf08LXfdKLBpePCpqitGDSeSRW7TfozM3pl0FlWROOUrH1U+zQ5qCLSPs2Z0XIAkH03GerJ9266L8q6iYMd2tfAo7u3hTAxuq2Bsfo=[/tex].如果 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在点 [tex=1.857x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处有极值,问它是极小值还是极大值?
- 对函数[tex=4.214x2.429]6tH0Bct4KP4fPnjqJeNu+zikzekSn1o9v2gKgyG5lhA=[/tex],回答下列问题:(1)函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=1.857x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]处的左,右极限是否存在?(2)函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=1.857x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]处是否有极限? 为什么?(3)函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex]处是否有极限? 为什么?
- 函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的导函数[tex=2.214x1.429]8cd96CjdKQybv+xwHUVQpw==[/tex]的图像是一条二次抛物线,开口向上,且与[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴交于[tex=1.857x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]和 [tex=1.857x1.0]X7etWab1J10Xwqu65uIXXQ==[/tex]处.若[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的极大值为[tex=0.5x1.0]2IRxdDa5OUp8cccgqlpdUA==[/tex] ,极小值为[tex=0.5x1.0]b3IS0b4Bl8Ic5Exl3IlXRQ==[/tex], 求[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex].
- 设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=1.857x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]点连续,且极限[tex=6.429x2.5]ENxIatiC2yqgaopSQCG83t3kurVWrMzpBRbeYcnuiQ8Lr1QVkHWb83+M9PWElMGa[/tex]。问:函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=1.857x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]点处是否可导?若可导,求[tex=2.143x1.429]mzwRhuDvrCMocO2CEffeaJzsyOyV9IHxECuGvFss+GU=[/tex]。
内容
- 0
试证明下列命题:设[tex=5.143x1.357]ErP4DRKVbHttzdFEItW0Oluc1GN5I3aGF77g43i5NkI=[/tex].n若对任给[tex=4.429x1.357]GZNUg7PsMcZAZnQyoB7SgQqIkjpI9t4QX53604g/eZc=[/tex] 在[tex=1.857x1.357]3kFsxSw3oX59d7ZOTzQb1M5UYY23tA8K+m+SBhKPjuU=[/tex]上绝对连续.且 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处连续,则 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在[0,1]上绝对连续.
- 1
设函数 [tex=12.786x4.071]ACpG7W/lXiEwdW69ASBj8/2YlnttL4SSB5wR8px8LpgUNzq7ycdc7SLe4a4gCUD/CbNsVRhRP/lHmPeVS16UtG9Khkwa+IYO4PoiXfjXGMw2WptZMt2fs9fNz+4jAOVOFkx4pUhmaNtVuSPhoF33Gg==[/tex],讨论在上面条件下,[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex](1) 在 [tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处连续;(2) 在 [tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处可导;(3) 在 [tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处导数连续?
- 2
设函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在点 [tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex] 的某邻域内有定义, 且[tex=14.143x2.0]j9xQoAXOO/rhZ2v9jEBRiI8bw3CHft7hrxnaKNO/f+t5UbORG8jSsjO7SikHkPHo[/tex] 试判断:(1) 函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在点 [tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex] 处是否可微? 若可微,给出函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在点 [tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex] 处的微分;(2)函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在点 [tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex] 处是否可导?若可导,给出函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在点 [tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex] 处的导数.
- 3
设函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.286x1.0]ii77lCTXExv3mnaX1dHV/A==[/tex]处 [tex=3.786x1.429]F27M+tMBWun73FG3D7wgFS7yd1R4xS62zskwGMLHYiU=[/tex]且[tex=3.929x1.429]79SmwT+8J9VTqKDgDEyFq/1LlmU/9Uc5ka5/oiUgs/k=[/tex] 则 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.286x1.0]ii77lCTXExv3mnaX1dHV/A==[/tex] 点( ). A: 一定有最大值 B: 一定有极小值 C: 不一定有极值 D: 一定没有极值
- 4
设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]连续,[tex=7.214x2.643]2ZJQOGzPP+WXkSjEhj0ot/8XbWpx0nNxKCDDSnV56LI=[/tex],试证:(1) 若[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是奇函数,则[tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex]是偶函数;(2) 若[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是偶函数,则[tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex]是奇函数.