设有n元实二次型,f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn-1+an-1xn)2+(xn+anx1)2,其中ai(i=1,2,…,n)为实数.试问:当a1,a2,…,an满足何种条件时,二次型f(x1,x2,…,xn)为正定二次型.
举一反三
- 设有n元实二次型 f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn-1+an-1xn)2+(xn+anx1)2,其中ai(i=1,2,…,n)为实数,若二次型为正定二次型,那么a1,a2,…,an满足的条件是 ( ) A: ai>0(i=1,2,…,n) B: a1a1…an=1 C: 1+(-1)n+1a1a2…an=0 D: 1+(-1)n+1a1a2…an≠0
- 若x1=2^(1/2),x2={2^(1/2)+2}^(1/2),.,x(n+!)=(2+xn)^(1/2),n=(1,2,.)求极限xn
- 青书学堂: 二次型 f( x 1 , x 2 , x 3 )=2 x 1 2 +5 x 2 2 +5 x 3 2 +4 x 1 x 2 −8 x 2 x 3 ,则 f的矩阵为 。
- 求函数 f(x)=3*x1^2 + 2*x1*x2 + x2^2 − 4*x1 + 5*x2. 时,输入代码 >>fun = @(x)3*x(1)^2 + 2*x(1)*x(2) + x(2)^2 - 4*x(1) + 5*x(2); >>x0 = [1,1]; >>[x,fval] = fminunc(fun,x0); 其中fun的作用是:
- F(x1,x2,x3)= x 1 2 +2x 2 2 +5x 3 2 +2x 1 x 2 +2x 1 x 3 +6x 2 x 3 的标准形为()