设`alpha_{1}, alpha_{2},alpha_{3}`均为3维列向量,记矩阵(A=egin{bmatrix}alpha_{1} ,& alpha_{2} ,& alpha_{3}end{bmatrix}),(B=egin{bmatrix}alpha_{1}+alpha_{2}+alpha_{3} , & alpha_{1}+2alpha_{2}+4alpha_{3} , & alpha_{1}+3alpha_{2}+9alpha_{3} end{bmatrix},) 如果(egin{vmatrix} A end{vmatrix}=1,)那么(egin{vmatrix} B end{vmatrix})=______
举一反三
- 设(3(alpha_{1}-alpha)+2 (alpha_{2}+alpha)=5(alpha_{3}+alpha),) 试求向量` alpha=`_____,其中`alpha_{1}=(2,5,1,3)^{T}, alpha_{2}=(10,1,5,10)^{T}`,( alpha_{3}=(4,1,-1,1)^{T}。)
- 设以下三个向量组\(S_{1}\)=\(\{\alpha_{1},\alpha_{2},\alpha_{3} \},\)\(S_{2}\)=\(\{\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}\},\)\(S_{3}\)=\(\{\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{5}\} \)的秩依次为\(3,3,4,\)则\(S={\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{5}-\alpha_{4} }\)的秩为______ 。
- 设以下三个向量组\(S_{1}\)=\(\{\alpha_{1},\alpha_{2},\alpha_{3} \},\)\(S_{2}\)=\(\{\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}\},\)\(S_{3}\)=\(\{\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{5}\} \)的秩依次为\(3,3,4,\)则\(S={\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{5}-\alpha_{4} }\)的秩为______ 。
- 设以下三个向量组\(S_{1}\)=\(\{\alpha_{1},\alpha_{2},\alpha_{3} \},\)\(S_{2}\)=\(\{\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}\},\)\(S_{3}\)=\(\{\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{5}\} \)的秩依次为\(3,3,4,\)则\(S={\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{5}-\alpha_{4} }\)的秩为______ 。
- 设以下三个向量组\(S_{1}\)=\(\{\alpha_{1},\alpha_{2},\alpha_{3} \},\)\(S_{2}\)=\(\{\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}\},\)\(S_{3}\)=\(\{\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{5}\} \)的秩依次为\(3,3,4,\)则\(S={\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{5}-\alpha_{4} }\)的秩为______ 。