行列式[egin{vmatrix} 3 & 1 &1 &1 \ 1 & 3 &1 &1 \ 1 & 1 &3 &1 \ 1 & 1 &1 &3end{vmatrix}=]______
行列式[egin{vmatrix} 3 & 1 &1 &1 \ 1 & 3 &1 &1 \ 1 & 1 &3 &1 \ 1 & 1 &1 &3end{vmatrix}=]______
若行列式(D=egin{vmatrix} 2&1&4&1\ 3&-1&2&1\1&2&3&2\5&0&6&2\ end{vmatrix}),则(3M_{31}+M_{32}+2M_{33}-M_{34}=)______
若行列式(D=egin{vmatrix} 2&1&4&1\ 3&-1&2&1\1&2&3&2\5&0&6&2\ end{vmatrix}),则(3M_{31}+M_{32}+2M_{33}-M_{34}=)______
若行列式\(D=\begin{vmatrix} 2&1&4&1\\ 3&-1&2&1\\1&2&3&2\\5&0&6&2\\ \end{vmatrix}\),则\(3M_{31}+M_{32}+2M_{33}-M_{34}=\)______
若行列式\(D=\begin{vmatrix} 2&1&4&1\\ 3&-1&2&1\\1&2&3&2\\5&0&6&2\\ \end{vmatrix}\),则\(3M_{31}+M_{32}+2M_{33}-M_{34}=\)______
设`alpha_{1}, alpha_{2},alpha_{3}`均为3维列向量,记矩阵(A=egin{bmatrix}alpha_{1} ,& alpha_{2} ,& alpha_{3}end{bmatrix}),(B=egin{bmatrix}alpha_{1}+alpha_{2}+alpha_{3} , & alpha_{1}+2alpha_{2}+4alpha_{3} , & alpha_{1}+3alpha_{2}+9alpha_{3} end{bmatrix},) 如果(egin{vmatrix} A end{vmatrix}=1,)那么(egin{vmatrix} B end{vmatrix})=______
设`alpha_{1}, alpha_{2},alpha_{3}`均为3维列向量,记矩阵(A=egin{bmatrix}alpha_{1} ,& alpha_{2} ,& alpha_{3}end{bmatrix}),(B=egin{bmatrix}alpha_{1}+alpha_{2}+alpha_{3} , & alpha_{1}+2alpha_{2}+4alpha_{3} , & alpha_{1}+3alpha_{2}+9alpha_{3} end{bmatrix},) 如果(egin{vmatrix} A end{vmatrix}=1,)那么(egin{vmatrix} B end{vmatrix})=______
[D=egin{vmatrix}a^2&(a+1)^2&(a+2)^2&(a+3)^2\b^2&(b+1)^2&(b+2)^2&(b+3)^2\c^2&(c+1)^2&(c+2)^2&(c+3)^2\d^2&(d+1)^2&(d+2)^2&(d+3)^2\end{vmatrix}=]______
[D=egin{vmatrix}a^2&(a+1)^2&(a+2)^2&(a+3)^2\b^2&(b+1)^2&(b+2)^2&(b+3)^2\c^2&(c+1)^2&(c+2)^2&(c+3)^2\d^2&(d+1)^2&(d+2)^2&(d+3)^2\end{vmatrix}=]______
\[D=\begin{vmatrix}a^2&(a+1)^2&(a+2)^2&(a+3)^2\\b^2&(b+1)^2&(b+2)^2&(b+3)^2\\c^2&(c+1)^2&(c+2)^2&(c+3)^2\\d^2&(d+1)^2&(d+2)^2&(d+3)^2\\\end{vmatrix}=\]______
\[D=\begin{vmatrix}a^2&(a+1)^2&(a+2)^2&(a+3)^2\\b^2&(b+1)^2&(b+2)^2&(b+3)^2\\c^2&(c+1)^2&(c+2)^2&(c+3)^2\\d^2&(d+1)^2&(d+2)^2&(d+3)^2\\\end{vmatrix}=\]______
设`A`是正交矩阵,则以下说法错误的是() A: `A^{-1}=A^{T}` B: \(\begin{vmatrix} A \end{vmatrix}=1或-1\) C: `A`的行(或列)向量是两两正交的单位向量 D: `A`的特征值为`1`或`-1`
设`A`是正交矩阵,则以下说法错误的是() A: `A^{-1}=A^{T}` B: \(\begin{vmatrix} A \end{vmatrix}=1或-1\) C: `A`的行(或列)向量是两两正交的单位向量 D: `A`的特征值为`1`或`-1`