• 2022-06-16
    给定方程[tex=4.929x1.357]9ElahAwM2f0FzsGAZKkzgA==[/tex]若在[0,2]上用二分法求根,要使精确度达到6位有效数,需二分几次?
  • 解:[tex=26.357x8.929]Ck4j1YFlvVH5wCAykOEMizkdv+WpgPGREn3S4cLHt+2Oerb6Z2qq2J7Kb9cyjWCyTYdNCg8giOzjjXA/orZ21Nwg4HjAmnLbQZ8O63f+kkM8aDcgw7GWMHyjWp+BeHtIztRXweN13w20/FpSQAyyai9mZcAn4l943Z4Y+WALQu9QhgyOxrDusDGuzuNsrPnZDbeEU+TSHRzWYREIjjknX/pJS8TT7ymBUccAAdg+7LQJgsd72vAX55io7FTXt8morYlE427oT7aJ90DKgeXb0DlGqrJ5IsBmM7+5Hx64AurOtMysB3XfG7nsOkZI3xDdPnOkKzVuoFEAobCtJ3KbanFoyo1SC7Mqpp7G1sJlHWZphgeDsEtwTzXBvo75DVz5UU1qFRXYh77VOKccJW6wLw==[/tex]所以只要2等分18次

    内容

    • 0

      教材P109 课后习题4.18用二分法求x^3+x-4=0,在[1,3]内的近似根,要求精度到10^-3,至少应二分几次? A: 8 B: 9 C: 10 D: 11

    • 1

      用二分法求方程[tex=6.214x1.286]PIQsK+542a+MxRRf3Br5Sw==[/tex]在[tex=1.929x1.286]uj8YUp05TOxtrNrRUulr5g==[/tex]的近似根,要求误差不超过[tex=3.929x2.0]uZaPTTy61GWYtwgZwPKGX/MjXV2SotUm42E8K5z3opY=[/tex]至少要二分多少?

    • 2

      设f(X)及g(X)在[a,b]上连续(a<b),证明:(1)若在[a,b]上f(x)>=0,且∫f(x)dx=0,则在[a,b]上f(x)恒等于0(2)若在[a,b]上f(x)>=g(x),且∫f(x)dx=∫g(x)dx,则在[a,b]上f(x)恒等于g(x)

    • 3

      用简单迭代法求下列方程的根,并验证收敛性条件,精确至 [tex=0.5x1.0]gHMbUA0oVdAA3pW6qwPDjw==[/tex] 位有效数字。1) [tex=4.929x1.357]Lt1qdkIcbJ6rvLY8Oy70OA==[/tex];3) [tex=8.714x1.357]yElsQvRghZUYucdNW9lleb62QloKzE+BwXgdLeUt2xI=[/tex];2) [tex=4.071x1.143]n1ZRctYcuGPiF0Ch511gMA==[/tex];4) [tex=4.429x1.357]kfg2XKfjtAAAOTX+FVYxbnFOvGl/iIp+at+IrmA5XVI=[/tex].

    • 4

      用二分法求方程[tex=6.143x1.286]wck3skeuXLXcnQ68cYi1ha7xn+Qf0sdwWzjVOeKUC7o=[/tex]在区间[tex=1.857x1.357]ZMlUcIHFeqq+rRh5BLe12A==[/tex]内的根,精确到3位有效数字。