采用二分法求解方程的根时要求已知区间[a,b]上有唯一根,即满足( )
A: f(a)*f(b)>0
B: f(a)*f(b)<0
C: f(a)*f(b)!=0
D: f(a)*f(b)==0
A: f(a)*f(b)>0
B: f(a)*f(b)<0
C: f(a)*f(b)!=0
D: f(a)*f(b)==0
举一反三
- 设函数f(x)在区间[a,b]上连续,若满足( ) ,则方程f(x)=0在区间[a,b]内一定有实根。 A: f(a)+f(b)<0 B: f(a)+f(b)>0 C: f(a)f(b)<0 D: f(a)f(b)>0
- 设函数f(x)在区间[a,b]上连续,若满足( ) ,则方程f(x)=0在区间[a,b]内一定有实根。 A: f(a)+f(b)<0 B: f(a)+f(b)>0 C: f(a)f(b)<0 D: f(a)f(b)>0
- 设函数f(x)在区间[a,b]上连续,若满足_____________,则方程f(x)=0在区间[a,b]一定有实根。 未知类型:{'options': ['f(a)f(b)>;=0', ' f(a)f(b)>;0', ' f(a)f(b)<;0', ' [img=87x19]17e0b8ca443f29e.jpg[/img]'], 'type': 102}
- 用牛顿切线法解方程f(x)=0,选初始值x0满足(),则它的解数列{xn}n=0,1,2,…一定收敛到方程f(x)=0的根。 A: f(x)f″(x)>0 B: f(x)f′(x)>0 C: f(x)f″(x)<0 D: f(x)f′(x)<0
- 已知f(x+1)=f(x-1),f(x)=f(-x+2),方程f(x)=0在[0,1]内有且只有一个根x=,则f(x)=0在区间[0,2014]内根的个数为( ) A: 1006 B: 1007 C: 2013 D: 2014