设f(x)=ln(2x-1),若f(x)在x0处的导数f′(x0)=1,则x0的值为( )
A: e+12
B: 32
C: 1
D: 34
A: e+12
B: 32
C: 1
D: 34
B
本题目来自[网课答案]本页地址:https://www.wkda.cn/ask/mxtaootmxateexo.html
举一反三
- 设函数f(x)=ax2+c(a≠0),若∫10f(x)dx=f(x0)0≤x0≤1,则x0的值为( ) A: 12 B: 34f(x0)a C: 32 D: 33mm
- 【单选题】函数f(x)在点x=x0处连续且取得极大值,则f(x)在x=x0处必有()。 A. f’(x0)=0 B. f’’(x0)<0 C. f(x0)=0且f’(x0)<0 D. f’(x0)=0或不存在
- 函数f(x)在x=x0处连续,x0为f(x)的极值点,则必有()。 A: f’(x0)=0 B: f’(x0)不等于0 C: f’(x0)不存在 D: f’(x0)=0或不存在
- 设f(x,y)与φ(x,y)均为可微函数,且φ'y(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是______. A: 若f'x(x0,y0)=0,则f'y(x0,y0)=0 B: 若f'x(x0,y0)=0,则f'y(x0,y0)≠0 C: 若f'x(x0,y0)≠0,则f'y(x0,y0)=0 D: 若f'x(x0,y0)≠0,则f'y(x0,y0)≠0
- 设f(x0)>0,f’(x0)=0,f’(x0)存在,而且f’(x0)+f(x0)=1,则()。 A: x0是f(x)的极大值点 B: x0是f(x)的极小值点 C: x0是f(x)的极值点 D: 不能确定
内容
- 0
设f(x)在点x=x0处可导,且f(xo+7△x)-f(xo)△x→1(△x→0),则f′(xo)=( ) A: 1 B: 0 C: 7 D: 17
- 1
设函数f(x),g(x)具有二阶导数,g(x0)=a,g’(x0)=0,g"(x)<0,则f(g(x))在x0取极大值的一个充分条件是______。 A: f’(a)<0 B: f’(a)>0 C: f"(a)<0 D: f"(a)>0
- 2
设f(x)的导函数是f′(x0),若f′(x0)=1,则lim△x→0f(x0+2△x)-f(x0)△x=______.
- 3
设f(x)在x=x0可导,且f′(x0)=-2,则lim△x→0f(x0)-f(x0-△x)△x等于( ) A: 0 B: 2 C: -2 D: 不存在
- 4
若xf"(x)+3x[f’(x)]2=1一e-x且f’(x0)=0(x0≠0),则()。 A: (x0,f(x0))是曲线y=f(x)的拐点 B: f(x0)是f(x)的极小值 C: f(x0)不是f(x)的极值,(x0,f(x0))也不是曲线y=f(x)的拐点 D: f(x0)是f(x)的极大值