设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为实对称矩阵, [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 为实反对称矩阵, 且 [tex=3.857x1.0]ooePFz0xjtusf6vpqQWa8A==[/tex] ; [tex=2.286x1.143]+HNOJQGFwGY69/nT/TpG2A==[/tex] 可逆. 试证 [tex=7.286x1.5]QUzf7wNPQjSumWBMyAJiKlvBOoI4blDCVw5zX+hrmH4=[/tex] 为正交矩阵.
举一反三
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为实对称矩阵,且[tex=8.929x1.357]LXtcz8hY+gk4rolY95FMai1hDTO3zmOeh4/3sSzhNkE=[/tex]问 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是否为正定矩阵。
- 求证: 正定实对称矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为正交矩阵的充要条件是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为单位矩阵.
- 设实对称矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]所有特征根的模都是 1,请证明:[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为正交矩阵。
- 设实对称矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex]阶正定矩阵,[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 为 [tex=2.643x1.071]DtblSgHpoGAPwi46dOaVgQnwvW/jeDaBCUz4o5gSjds=[/tex]实矩阵,试证[tex=2.857x1.214]tcG+8IIJJKk7PoAcfI6Jyc1ywV5mw+R/Vvlesyi0krQ=[/tex] 为正定矩阵的充分必要条件是矩阵 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]的秩 [tex=3.643x1.357]DGeb8FXg9a2sGpXznZkGCw==[/tex]
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵, 求证: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是半正定阵的充要条件是存在同阶实对称矩阵 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex], 使得 [tex=2.786x1.214]or70cFxB56GcrSSRwtcDrw==[/tex].