设实对称矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex]阶正定矩阵,[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 为 [tex=2.643x1.071]DtblSgHpoGAPwi46dOaVgQnwvW/jeDaBCUz4o5gSjds=[/tex]实矩阵,试证[tex=2.857x1.214]tcG+8IIJJKk7PoAcfI6Jyc1ywV5mw+R/Vvlesyi0krQ=[/tex] 为正定矩阵的充分必要条件是矩阵 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]的秩 [tex=3.643x1.357]DGeb8FXg9a2sGpXznZkGCw==[/tex]
举一反三
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 阶正定实对称矩阵, [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 是 [tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex] 实矩阵. 求证: [tex=2.571x1.143]OMF2hI48i4CoSFu5QCPfBr/IHEqik0sFNkVIcBdFl90=[/tex] 是正定阵的充要条件是 [tex=3.643x1.357]UfZKFwmIjVvXCd9ebv0V4w==[/tex]
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]是实正定矩阵,证明:[tex=1.571x1.0]ZT2ndRlmVScNtr8tRaWqog==[/tex]是正定矩阵的充要条件是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]可换。
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 阶正定阵,[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 为 [tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex] 矩阵,证明:[tex=2.786x1.214]fxiwA+KR7qSksI7NIWd7PQ==[/tex] 为正定阵的充要条件是 [tex=3.714x1.357]RBOmdgAdToCAo4tvnYRHfQ==[/tex] .
- 设[tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex]为满秩矩阵,[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为对称矩阵。证明:如果[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为正定矩阵,则[tex=3.286x1.214]tfkJC0go85s+r+gIn+qVcQ==[/tex]是正定矩阵。
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex]实矩阵, [tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶单位矩阵, 已知矩阵 [tex=6.0x1.429]E+KTwla4iIiovZQyXGi91W7ZkjJxF+GOto2j106uo+U=[/tex] 试证: 当 [tex=2.429x1.071]8zpXB85KiofkRevQFrdlFA==[/tex]时,矩阵 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]为正定矩阵。