设随机变量\(X\)的数学期望和方差分别为\(-1\)和\(1\),试给出\(P(|2X+2|\ge3)\)的上界
A: \(\frac{1}{9}\)
B: \(\frac{1}{3}\)
C: \(\frac{4}{9}\)
D: \(\frac{2}{3}\)
A: \(\frac{1}{9}\)
B: \(\frac{1}{3}\)
C: \(\frac{4}{9}\)
D: \(\frac{2}{3}\)
举一反三
- 已知随机变量$(X,Y)$服从二维正态分布$N(1,0;9,16;-\frac{1}{2})$,则$Z=\frac{X}{3}+\frac{Y}{2}$的数学期望和方差分别为 A: $\frac{1}{2};3$ B: $\frac{1}{3};3$ C: $\frac{1}{3};11$ D: $\frac{1}{2};11$
- (3). 设随机变量 \( X \) 的数学期望 \( E(X)=\mu \),方差 \( D(X)=\sigma ^2 \),\( P\{\left|<br/>{X-\mu } \right|< 4\sigma \}\ge \)( )。 A: \( \frac{8}{9} \) B: \( \frac{15}{16} \) C: \( \frac{9}{10} \) D: \( \frac{1}{10} \)
- (10). 已知在5重贝努里试验中成功的次数 \( X \) 满足 \( P\{X=1\}=P\{X=2\} \),则概率 \( P\{X=4\}= \)( )。 A: \(1- C_4^5 (\frac{1}{3})^4(\frac{2}{3}) \) B: \( C_5^4 (\frac{1}{3})^2(\frac{2}{3})^3 \) C: \( C_5^4 (\frac{1}{3})^4(\frac{2}{3})^4 \) D: \( C_5^4 (\frac{1}{3})^4(\frac{2}{3}) \)
- 设随机变量X的数学期望与方差均为\(20\),试给出$P(0 A: \(\frac{1}{20}\) B: \(\frac{1}{10}\) C: \(\frac{9}{10}\) D: \(\frac{19}{20}\)
- 设随机变量X的数学期望与方差均为\(20\),试给出\(P(0 A: \(\frac{1}{20}\) B: \(\frac{1}{10}\) C: \(\frac{9}{10}\) D: \(\frac{19}{20}\)