分类器欠拟合时( )
举一反三
- 关于欠拟合与过拟合,以下哪种说法是不正确的 A: 欠拟合一般是由于样本集合太大而造成的 B: 欠拟合时,增加模型的复杂度,或者增加输入特征的个数,可有望改善 C: 过拟合时,增加训练集样本个数,可有望改善 D: 过拟合时,减小模型复杂度,可有望改善
- 评估分类算法的要素的是( )。 A: 避免欠拟合 B: 避免过拟合 C: 简洁性 D: 准确度
- 在图像分类任务中,训练样本少可能会带来模型欠拟合的问题。
- 训练分类机器学习模型时需要避免过拟合和欠拟合的问题,关于这些问题以下说法错误的是() A: 复杂的模型时容易发生欠拟合问题 B: 神经网络不会出现过拟合问题 C: 正则化方法可以减少过拟合问题 D: 增加数据量不能减少过拟合问题
- 如果一个模型在测试集上偏差很大,方差很小,则说明该模型() A: 过拟合 B: 可能过拟合可能欠拟合 C: 刚好拟合 D: 欠拟合