• 2022-06-19
    设 [tex=0.5x0.786]pmD1JbahT9zMRAbBNi045A==[/tex] 是 [tex=0.643x0.786]dFKQavWFzybe6S1GPVXNhQ==[/tex] 的共轭调和函数,证明 [tex=4.0x1.357]NVq5y/5nLcHxsQ2NE6W9jg==[/tex] 是调和函数. 
  • 证   因为 [tex=1.571x1.0]Smo7PM03WBGUYmy6Gq0PDA==[/tex] 是调和函数,所以有[p=align:center][tex=9.5x1.286]o2S0R8o3o5jspL860dmnbUPNAjN44opQfaCEE346xaJzFqN6DLVVs+ONxE1fxp9w[/tex]又因为 [tex=0.5x0.786]pmD1JbahT9zMRAbBNi045A==[/tex] 是 [tex=0.643x0.786]dFKQavWFzybe6S1GPVXNhQ==[/tex] 的共轭调和函数,所以满足 [tex=2.286x1.143]gowb8Y5CTRkZWY0x4az7EB4oSf5/guXkIvGHrufWK6M=[/tex] 条件,即[p=align:center][tex=7.5x1.214]zt2Lh9wk6YzgQFDng8Hoy91G3Ti6ysHqMuxrVb9Ewbju2Dd8ZG9reBzVwx/zdrRl[/tex] 所以  [tex=6.571x1.643]8QdsFeQ8WJXdqmT2TsFRccJoUgNnRl+Kx3zFYAGpx+kqr89N3MR7jceWhB5wFBDG+reVWUvZX5mE7DF0z9HE3A==[/tex]而 [tex=4.0x1.357]NVq5y/5nLcHxsQ2NE6W9jg==[/tex] 的二阶偏导数连续,且[p=align:center][tex=12.571x3.214]rZM5/OPAdr7aX+kNl9iwpGB3xdvhzc4yzs4M0LOnQT+uZYQXZC2pOwr8Ibja9FYR3lZebGgmLXFRlJhOpcSB6lVpm0e1NscuEWnjIkkvc3y3hB+vfdMRkf3m6fejudYAslN1IFFGZ6eFig2Hf2oUNvjQ9lwdjm74pS5pQcNq9p8=[/tex]同样有[p=align:center][tex=11.286x1.643]aog5lKTiVYpCVk4K/tjbRgeUaL3dmRCwUTxnGIzjHayYez2dJjz/JzYSoWxagcAlv8N6QKmifudCyEVginBvgoOQXFzFAPKn+76MUz+8JD0=[/tex]所以[p=align:center][tex=16.357x3.643]qeiYnKXLEhyhuGRg8yLtrzllf2pb2BTMfUSKY11cKuk1A3zvSw/bk/d0x+ajZ5Ty50qRKifNli7FquOHh6ShuvnT3IJh1Pv+Iok4JmnPaRQCWTxfm5Aq/hP/ykw9po5wUksA1LqR8K2oiwhFwIsbNQUy7y29i44X9Vd4FPb3r6iD7FFZPKKgm7H6IFnTnWocm+Q1YmpNmDSO9zLRYE1OJ0A16TpK+bI33SiJko2Sg2B0iLXmvGcCTHOQB0cigcmW3n5O/LYoXK3sUVdF12ufOg==[/tex]

    内容

    • 0

      已知 调和函数[tex=8.0x1.5]y0Wks3OIKcTlWuphcuSrRBvaoKuK0b+PMCqJCkABczE=[/tex], [tex=0.643x0.786]2LwQJcArGuAsQ0k00CwMFw==[/tex]求其共轭调和函数[tex=2.786x1.357]GhcMUKWYfCD3K0BhvBKDbw==[/tex]及解析函数[tex=8.857x1.357]V8B5MzP6n3pNEUxtCgpYSMZw2KaDlNPXFOwkRCPQUAf5pBIUyV+15DhL6vkfRPsS[/tex]

    • 1

      证明函数[tex=7.214x1.5]S1ftoyHK1niA72U6OK1yRg5tEHfHxeO1QjO4ZoPI0AE=[/tex]为调和函数,求出共轭调和函数[tex=2.857x1.357]oni5YFYZg9r1D8AXbqLQGA==[/tex]与解析函数[tex=4.643x1.357]T1b4MpRp1jts8m/9pqZ81hEEUhkSW+IaVg1mIAJLtGI=[/tex]

    • 2

      设 [tex=5.857x1.429]grsiQIxH1QtysS2kXoDoxJ9oQQ3sGxwmnPyqBk/5AuQ=[/tex] 为调和函数,试求其共轭调和函数 [tex=2.786x1.357]GhcMUKWYfCD3K0BhvBKDbw==[/tex] 及解析函数 [tex=9.286x1.357]VXRiOJeOrIGQLgMSad8UR758hPXkWWekuSonG3su3Hk=[/tex].

    • 3

      已知函数 [tex=7.5x1.5]nFJ5eriQ3JjnYeseRMPezorIFFo1tTuptiBl91cW/b8=[/tex] 证明它是一个调和函数且求出其共轭调和函数 [tex=2.929x1.357]ffp8Fn+Z/Hdd7Z8sq55+eQ==[/tex]

    • 4

      有向图 [tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex]是单连的,是指对于任意两个顶点 [tex=0.643x0.786]dFKQavWFzybe6S1GPVXNhQ==[/tex] 和 [tex=0.5x0.786]pmD1JbahT9zMRAbBNi045A==[/tex], 或者 [tex=0.5x0.786]pmD1JbahT9zMRAbBNi045A==[/tex] 是从 [tex=0.643x0.786]dFKQavWFzybe6S1GPVXNhQ==[/tex]出发可到达的,或者 [tex=0.643x0.786]dFKQavWFzybe6S1GPVXNhQ==[/tex] 是从 [tex=0.5x0.786]pmD1JbahT9zMRAbBNi045A==[/tex] 出发可到达的. 证明: [tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex]是单连的当且仅当 [tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex] 有一条生成有向途径.