求函数 [tex=6.071x1.5]WN07JCQj60m1R/Uo9hpmgQQHg2P0W3v2LhwlhY4rq+U=[/tex]的微分
举一反三
- 已知管内液体质点的轴向速度v与质点所在半径r成抛物线型分布规律。当r=0时,[tex=2.857x1.214]yL4l0eju4XyPt8jUgrNg4g==[/tex];当r=R时,v=0。(1)试建立[tex=7.429x1.357]2/fEMOSH0jetOvkvnsKgC12ZHzGR5wFBaxf9tzPo9Ec=[/tex]的函数关系式;(2)如果[tex=16.143x1.357]yVfQCf3dGfsrdKkJZZp8bIAnOvEOhHd1lAPZPBMIKytU9UHmxrFeFeUc4YZFK8YL[/tex]时,试求r= 0、2、4、6mm各处的切应力。(如图1 - 11)[img=450x362]17acc5175218466.png[/img]
- 假设原始问题为: max z=2x 1 -x 2 +3x 3 -2x 4 s.t. x 1 +3x 2 - 2x 3 + x 4 ≤12 -2x 1 + x 2 -3x 4 ≥8 3x 1 - 4x 2 +5x 3 - x 4 = 15 x 1 ≥0, x 2 :Free, x 3 ≤0, x 4 ≥0 则对偶问题中约束条件及决策变量的符号依次为: min y=12w 1 +8w 2 +15w 3 s.t. w 1 - 2w 2 + 3w 3 ( ) 2 3w 1 + w 2 - 4w 3 ( ) -1 -2w 1 +5w 3 ≤3 w 1 - 3w 2 - w 3 ≥-2 w 1 () 0,w 2 () 0, w 3 :Free
- 利用微分,求下列近似值:(1)[tex=2.571x2.0]1gkPHMmDFl17xiZlURulcg==[/tex](2)[tex=2.429x1.429]USggBAjFomMY4e0NLutPiA==[/tex](3)[tex=2.143x1.214]042jw9WE645b3wxL0waCXw==[/tex](4)[tex=2.786x1.0]zIDxscziz4XQWvCmOgHhvQ==[/tex]
- 已知随机变量X的分布列如下,求X的分布函数。 X 0 1 2 3 p 1/2 1/4 1/8 1/8
- 设X~U(a, b), E(X)=3, D(X)=1/3, P{2<X< 3} = ( ). A: 0 B: 1/4 C: 1/3 D: 1/2