• 2022-06-07
    若[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶方阵[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]与[tex=0.929x1.0]GTnOCR9hNPsOuxGSyBGTAE4D+bwdNZdKWKqAkIkho7A=[/tex]相似,则
    未知类型:{'options': ['[tex=4.429x1.214]c5Cf4pRARaBipYntugL/3rpZOxMHSVRnNT2Cv9jNlyW9o5L6BebZgmrG4uduLQsQ[/tex]', '[tex=5.857x1.357]0HF2JqR1jNzMEZr/eHAG+5R4aNdePh0ySLlyOl1kdGEXDSTDpROuStCUefTr0BP8DmFphS9gxl19P9C/UPKZIg==[/tex]', '[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex],[tex=0.929x1.0]GTnOCR9hNPsOuxGSyBGTAE4D+bwdNZdKWKqAkIkho7A=[/tex]都有互异的特征值', '[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex],[tex=0.929x1.0]GTnOCR9hNPsOuxGSyBGTAE4D+bwdNZdKWKqAkIkho7A=[/tex]都有[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个线性无关的特征向量'], 'type': 102}
  • B

    举一反三

    内容

    • 0

      设 [tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵,则 未知类型:{'options': ['[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]的\xa0[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]\xa0个特征向量两两正交', '[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]的\xa0[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个特征向蝠组成单位正交向量组\xa0', '[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]的\xa0[tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex]重特征值[tex=1.0x1.214]BJgXz+H9TVMXJqlPyvsQ8A==[/tex],\xa0有\xa0[tex=7.214x1.357]ftyMxpjPRBo1HcLFrbGsDjj7wt8HzHg2EPBAMYvg8pzrz/DaHxjy/F/KuWc0yqLllkbqPcppXxNStrQcm12EXQ==[/tex]', '[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]\xa0的\xa0[tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex]\xa0重特征值\xa0[tex=1.0x1.214]BJgXz+H9TVMXJqlPyvsQ8A==[/tex],\xa0有\xa0[tex=5.857x1.357]ftyMxpjPRBo1HcLFrbGsDjj7wt8HzHg2EPBAMYvg8pzrz/DaHxjy/F/KuWc0yqLlqt95U9QvM+dhbDJungcnmQ==[/tex]'], 'type': 102}

    • 1

      若矩阵 [tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex] 满足 [tex=3.214x1.429]c5Cf4pRARaBipYntugL/3g4G9yaUH0tIlHD2joA/k+ReH5exc65Bl22PEHTwNvwm[/tex] 证明: [tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex] 的特征值 [tex=1.0x1.214]BJgXz+H9TVMXJqlPyvsQ8A==[/tex] 只能为 0 或 1 .

    • 2

      矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 与 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 相似的充分条件是 未知类型:{'options': ['[tex=3.643x1.357]MzmmROCjjtWxSw9nY2Sa7EzguI4Ba18TvIijucjkMy00FBE667WnCJMQh862mXLw[/tex]', '[tex=4.857x1.357]SMB0AC6IZNDjxg6K+6zWVs07XJcGwZ/p+cesADP13k88bsvoOLqVzG/J0/MiXMC8GyrZbPjaPqoCViV+aT4HdA==[/tex]', '[tex=0.714x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex] 与 [tex=0.929x1.0]GTnOCR9hNPsOuxGSyBGTAE4D+bwdNZdKWKqAkIkho7A=[/tex]有相同的特征多项式', '[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵[tex=0.714x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]\xa0与\xa0[tex=0.929x1.0]GTnOCR9hNPsOuxGSyBGTAE4D+bwdNZdKWKqAkIkho7A=[/tex]有相同的特征值且[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个特征值互不相同'], 'type': 102}

    • 3

      如果 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶实对称矩阵[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]满足[tex=3.571x1.429]c5Cf4pRARaBipYntugL/3kWzFBMtOu9hHfk8QjSjCP9p2vY2mfUTmWQYcFK6ZcYR[/tex]证明[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]一定是单位矩阵.

    • 4

      设[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex],[tex=0.929x1.0]GTnOCR9hNPsOuxGSyBGTAE4D+bwdNZdKWKqAkIkho7A=[/tex],[tex=0.857x1.0]0VpJS0vjPV56/khQ++mGPg2qyuprt2n1PFYmiqwMaHc=[/tex]为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶方阵,已知[tex=2.714x1.357]MzmmROCjjtWxSw9nY2Sa7Frr3eEznwYGSofxy2iJi3Q=[/tex],[tex=2.714x1.357]qTAfVcUImgDU4qq+P0GG2s+5wmzf3YyR7DaODLg/mg0=[/tex],试求行列式[tex=16.786x1.786]MzmmROCjjtWxSw9nY2Sa7LSRP2ASImsN5NMQvQfYVhbYUNkVzWrEVNAySvWi47nVgoVbrS1ZYge6EHQDJEn6WhDAqv3ykqJ6goHIJ+HSvbi831e4rL0ZPERp0nhGbbqbpk8apHWh9jJ+Ga1YBGvGpfM0Xd0tx7QG0zo5IxkgBb6amMJaT2LjCct8+XFTlip2w6X8MtOxWxvabMT2jhI+JXboP4JIPu9qy51STgd87GA=[/tex]的值.