• 2022-06-07
    证明: 若[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]在[tex=1.857x1.357]bawv/j+LZ1l+o4ciN/29dA==[/tex]上可积, [tex=0.643x1.0]J+LW/0i6Fe+lWEmBUgT8zg==[/tex]在[tex=1.857x1.357]bawv/j+LZ1l+o4ciN/29dA==[/tex]上连续,且除有限个点外有[tex=5.0x1.429]vcoFvsi7S06HgXTsHmMDCSb7DcJ5ck9Hi0PzKAJUVzo=[/tex], 则有[br][/br][tex=10.071x2.857]YQy8o6xXV2vuInKBm3FsSlJYD2khGdpjb7CEWe0giR4=[/tex]
  • 证 在[tex=1.857x1.357]bawv/j+LZ1l+o4ciN/29dA==[/tex]上不妨设[tex=5.929x1.286]Yqu2wfbzt/y3HkPBqbki3+zjLW5aMXJT1QLoR3hLJ2jgHT/cx53U7w7vbYYfqJflhMN2ie4jThHgDuMwKSOHPg==[/tex]是使[tex=5.5x1.286]72KqtJfIBCKsq/4OZwsJafmPzUVdrJRprGhxWcMQT80=[/tex]的有限个点,则在[tex=1.857x1.357]bawv/j+LZ1l+o4ciN/29dA==[/tex]任取点[tex=5.714x1.357]Kg2DS97dvum+gDZ84avnnb3LzwMeX/9B3ImA3GQPlneLMGLyTRf05RyGAdVTpMLR[/tex],使得[tex=12.929x1.214]0duaRkIfA98LeM4r2CUpWMCREfsEah1eGiq6WjXmgDuU2Jkdx47KwghI1bY6McNT[/tex]且使[tex=14.714x1.429]Ow3VVjw9l8uf6ZheV4jNVJj9putZYIsKjSltRxN42c6xXZjX/FfHgvgvx4Nhn3T5AwaxZOFTgUWN9c6GegB8FocOhjTTB71XxxxPxPRH3hqFwGXx1tTYQktnAI2X6al3ZjUkr9tNlzjV7TyydIMJMbFORzwRu/Z8nzVsgsGXXgw=[/tex],[br][/br]则[tex=2.0x1.357]XiwLhO8FnROM2q2R1tcKSw==[/tex]在[tex=3.571x1.357]1/tfoI2pYUu/G9N+qIcHy+nkQOWBKmDWALxb5Zpy5nc=[/tex]上 连 续, 在[tex=3.786x1.357]TuTBCyoHSDdyHf9sxTaaTMbSfP0Y3DPCMXOZb/nOUUI=[/tex]内可微且[tex=11.429x1.429]vcoFvsi7S06HgXTsHmMDCWXaKHbqnq8nkn5hXK6k9GVj8xMsylahlMVA0a4hRN0I[/tex],[br][/br]因而利用拉格朗日中值定理可得[tex=4.643x1.357]QvJFr3XHXjWpZfHh5fNXVw==[/tex][tex=9.786x3.286]msnYzWJVaQM6OJ5tSgb5By8+bHTZGyeTZG72Td2QcBCwLo5XSnPcRkYg/jSJsQyLDWFD7Xfs3Xc6tdBuD0rZqpZaD4ULSOJJBV8vsscY6Wg=[/tex][tex=6.5x3.286]Q45c26RtC5/hgVj2qfQafgcpZR+MBWtsRaBmRWp4IvEhCTvPLAV6WMLdIhN3LBWrYuIN1wWWSsereunn8HEQYw==[/tex][br][/br]而由于[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]在[tex=1.857x1.357]bawv/j+LZ1l+o4ciN/29dA==[/tex]上可积,故[br][/br][tex=4.643x1.357]QvJFr3XHXjWpZfHh5fNXVw==[/tex][tex=8.143x3.286]O6L3Kvya8jiFVZSEr57NB81/3L87GoUROiyugVVielVDSfPmMXV2zg3sXKhUdclNm7gHAvJ2VjlcANS7iDUKZYdn8J9Ozl9MDs7b/vvH1YYANSl7eNU3YjWFGeAN7s6h[/tex][tex=5.643x2.857]ma6azncrmIBN/2ForJKvRhcns+CaQDjB7gcoIuL8Cgc=[/tex] [tex=6.286x1.929]sKhNnlDyXq7lJNwsNHoZRadaNKrMOHnUyiMBH01CEvhv9086Xdpif98fdYe6uXpz/omXo7O+Wb8+lllAwwbpoA==[/tex]

    举一反三

    内容

    • 0

      设[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在[tex=1.857x1.357]bawv/j+LZ1l+o4ciN/29dA==[/tex]上[tex=1.571x1.357]GtLNfoGLJZiK1mceQTIzpA==[/tex]可积,且处处有[tex=3.714x1.357]n3f7jwsT3zAd0hiq20ir9w==[/tex],试证明[tex=8.286x2.857]LRrXvfh63hVL+k+pVfVbWjZWfERLtaNFxQKW5TU2MpojTALjR71TlHCh9Bj5HnQD[/tex]

    • 1

      设[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]是[tex=1.857x1.357]bawv/j+LZ1l+o4ciN/29dA==[/tex]上的绝对连续函数,[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]定义在[tex=4.643x1.357]3+NDETjbtRnj+mD3xG2zviOhqLdK3LTtKMvqcRw22dQ=[/tex]上,且满足利普希茨(Lipschitz)条件,试证明[tex=3.143x1.357]fUn7YZ664ewPCotsQ//Alg==[/tex]是[tex=1.857x1.357]bawv/j+LZ1l+o4ciN/29dA==[/tex]上的绝对连续函数。

    • 2

      设[tex=6.071x1.357]4LgfSyTm0h7bq9xqSv7G4LNyI9eXQ7t6nf458Xe37zjS4V81lBtGaGjd6xQTx6KK[/tex]在[tex=1.857x1.357]bawv/j+LZ1l+o4ciN/29dA==[/tex]上连续,在[tex=2.214x1.357]mpyYBdP7k8056w1o+qOOxw==[/tex]内可导,证明:存在[tex=3.286x1.357]EV4pc+LBkNBOhd4NZUA5NQ==[/tex],使得[tex=16.357x3.357]Uyz5s0rmQIddjb5Jc2T/YRSnI70CPiP9kSoxG/LsBEQsOFwZaIYio/xDEuz4rvImZ3GEM+gn+IQRe1Rq9HOufnlmnLgQiRTLLWlyd2m5PpNiisTat4EvIByMSXzh8HVQPts8b6b0urtNgk9oqPzz4TXb9tDW2RcYR0g9UvBgcN8wfdw1empP7P1zbq+Jg68Psxp+i3UzfEuBVHPM7mUbhwNryRi3jXo3t34CuHeOXN8=[/tex]

    • 3

      证明:设[tex=3.714x1.357]1wcc6vqE76k/eJ2Xobhi2g==[/tex],则[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]能在[tex=1.857x1.357]bawv/j+LZ1l+o4ciN/29dA==[/tex]上取得介于它的最大值[tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex]与最小值[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]之间的任一值。

    • 4

      证明[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]为[tex=1.857x1.357]bawv/j+LZ1l+o4ciN/29dA==[/tex]上连续函数的充分必要条件是对任意实数[tex=0.5x0.786]EL0hSqs6jZBGdsmH7TMShQ==[/tex], 集[tex=6.143x1.357]CpKxGYq0bqZsw3HJXpFWZ1H5QJraiIjf+p3HFjeuvK4=[/tex]和[tex=6.714x1.357]CpKxGYq0bqZsw3HJXpFWZ9It7fIkG1Fhfd/gA4+TsOo=[/tex]常为闭集.