设新旧坐标系都是右手直角坐标系,点的坐标变换公式为[tex=5.929x3.357]fnpmC2J6JmQBLyo5NmGAz20LDkJvoTTRDshihPWyDrWubmZdLZzRo943K0GCt9FTxA0Vvc8uMlcme21kg7wzUIS3ef46UOjmdIEZeBzpVjg=[/tex].
举一反三
- 设新旧坐标系都是右手直角坐标系,坐标变换公式为:[tex=5.929x3.357]fnpmC2J6JmQBLyo5NmGAz8pUnmkU2EGZSNOtb/NH7tQHzrUeb954wR4OVcXfPre+XQOT7ec3ekLvVNUbSPZyX06GuB6pPTjJ0CNTxIxziXc=[/tex],其中[tex=5.214x1.429]XywScx2ogn6wmH1+mAl1WG+2O08W8moNGGIkSqshS6YQpj+EsjGFLIlGmMDjowT0[/tex]分别表示同一个点的旧坐标与新坐标,求新坐标系的原点的旧坐标,并且求坐标轴旋转的角[tex=0.5x1.0]YCaAGj51cMYuHuypE42enQ==[/tex]。
- 在右手直角坐标系[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]中,设两直线[tex=0.857x1.214]A3UMBK5Fhc/2fg/uf1O7gA==[/tex][tex=9.571x1.214]/b8gGI1O5mRosQgeDGb7kvr6j1hilxu+sVVfgkhzCpQ=[/tex]互相垂直,取[tex=1.786x1.214]/Om/i0rEH84v5lSAslsDtg==[/tex]为右手直角坐标系[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]的[tex=3.357x1.357]dLKEsBQsbYT+daI3ZIAESBxYnKAkpHm8XQdRndx+CMA=[/tex]轴,试求[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]到[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]的点的坐标变换公式。
- 作直角坐标变换,已知点[tex=7.5x1.357]Jy/Wn/iMtBSriUSXMuNg7t+0IxcDo+HfwsnwAntphVE=[/tex]的新坐标分别为[tex=5.214x1.357]0cahwCWbqzSTubJ9jXm4qA==[/tex],求点的坐标变换公式。
- 在平面直角坐标系[tex=3.786x1.357]GjgX5mMBoIoDNAHfmdQmad1JUPwO3fCEUeGGiIj6UGqy44XgR5EYFsLskhJrELxV[/tex]中, 已知新的直角坐标系 [tex=3.857x1.429]3WILtSqNbWGcXs23Bff077kqHS1uKntLW8ChHBGS4GU0Riv4TRrPxhkHPvmhXwvQnQnjw1Keg7qtoISNZwzK2bLx/MgJHDZvMcOM0DFXWqU=[/tex]的原点[tex=1.071x1.143]VG3HDiGr6dkcJS6t5RFA6w==[/tex]的坐标为(3,2), 点[tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex](5,3)在新坐标系的 [tex=0.857x1.143]uZ7CytEH9YWCH592BojXyQ==[/tex]轴上, 且点[tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex]的新坐标[tex=2.357x1.214]GfHu9jrA2QMDkacMCzDF2howxYm16ewnppkQN+l9Y4w=[/tex] 试用矩阵形式写出从[tex=4.0x1.357]JfW5pbPPV2Y9udi8KUUmz0h9OYlo+oCYrm0/AX5B7cD0HsYl0ZPiHeCVq8NfY8wk[/tex]到[tex=3.857x1.429]3WILtSqNbWGcXs23Bff077kqHS1uKntLW8ChHBGS4GVSzvAdDy8sRsbpe8NxBff8RSbcaFZqHOkKJJ5aR2nLGY7vv+3z+xtOs5cNLu5yt5k=[/tex]的坐标变换公式.
- 设仿射坐标系[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]到[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]的点的坐标变换公式为:[tex=6.0x3.357]fnpmC2J6JmQBLyo5NmGAz9F5h9MIDykrH+xkCXNEswFbSyOS5TdM4ugwtleOzv06DE5emE2zI2DHLIFObz2RXrtsPqb9bEo98jkFn8618Ic=[/tex]。求直线[tex=5.857x1.214]1pecbxZDB1xu/0H6ijHM3hqa9/cRwiBE3Vz+PmDUQBA=[/tex]在坐标系[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]中的方程。