在平面直角坐标系[tex=3.786x1.357]GjgX5mMBoIoDNAHfmdQmad1JUPwO3fCEUeGGiIj6UGqy44XgR5EYFsLskhJrELxV[/tex]中, 已知新的直角坐标系 [tex=3.857x1.429]3WILtSqNbWGcXs23Bff077kqHS1uKntLW8ChHBGS4GU0Riv4TRrPxhkHPvmhXwvQnQnjw1Keg7qtoISNZwzK2bLx/MgJHDZvMcOM0DFXWqU=[/tex]的原点[tex=1.071x1.143]VG3HDiGr6dkcJS6t5RFA6w==[/tex]的坐标为(3,2), 点[tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex](5,3)在新坐标系的 [tex=0.857x1.143]uZ7CytEH9YWCH592BojXyQ==[/tex]轴上, 且点[tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex]的新坐标[tex=2.357x1.214]GfHu9jrA2QMDkacMCzDF2howxYm16ewnppkQN+l9Y4w=[/tex] 试用矩阵形式写出从[tex=4.0x1.357]JfW5pbPPV2Y9udi8KUUmz0h9OYlo+oCYrm0/AX5B7cD0HsYl0ZPiHeCVq8NfY8wk[/tex]到[tex=3.857x1.429]3WILtSqNbWGcXs23Bff077kqHS1uKntLW8ChHBGS4GVSzvAdDy8sRsbpe8NxBff8RSbcaFZqHOkKJJ5aR2nLGY7vv+3z+xtOs5cNLu5yt5k=[/tex]的坐标变换公式.
举一反三
- set1 = {x for x in range(10)} print(set1) 以上代码的运行结果为? A: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} B: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10} C: {1, 2, 3, 4, 5, 6, 7, 8, 9} D: {1, 2, 3, 4, 5, 6, 7, 8, 9,10}
- >>>x= [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9]>>>print(x.sort()) 语句运行结果正确的是( )。 A: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] B: [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9] C: [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0] D: ['2', '4', '0', '6', '10', '7', '8', '3', '9', '1', '5']
- 【计算题】5 ×8= 6×4= 7×7= 9×5= 2×3= 9 ×2= 8×9= 7×8= 5×5= 4×3= 5+8= 6 ×6= 3×7= 4×8= 9×3= 1 ×2= 9×9= 6×8= 8×0= 4×7=
- 输出九九乘法表。 1 2 3 4 5 6 7 8 9 --------------------------------------------------------------------- 1*1=1 2*1=2 2*2=4 3*1=3 3*2=6 3*3=9 4*1=4 4*2=8 4*3=12 4*4=16 5*1=5 5*2=10 5*3=15 5*4=20 5*5=25 6*1=6 6*2=12 6*3=18 6*4=24 6*5=30 6*6=36 7*1=7 7*2=14 7*3=21 7*4=28 7*5=35 7*6=42 7*7=49 8*1=8 8*2=16 8*3=24 8*4=32 8*5=40 8*6=48 8*7=56 8*8=64 9*1=9 9*2=18 9*3=27 9*4=36 9*5=45 9*6=54 9*7=63 9*8=72 9*9=81
- 已知a=[1 2 3; 4 5 6; 7 8 9],执行命令:a([3,1],:)=a([1,3],:),a将变为( )。 A: [4 5 6;4 5 6;4 5 6] B: [7 8 9;4 5 6;1 2 3] C: [2 2 2;5 5 5;8 8 8] D: [3 2 1;6 5 4;9 8 7]