一袋中有 [tex=0.5x1.0]swhA5SpCD6lPteGlwRbm9g==[/tex] 个乒兵球,编号分别为 [tex=4.571x1.214]kkjIK6IJmgFPeoL2c5vAyA==[/tex] 从中随机地取 [tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex] 个,以 [tex=0.786x1.0]yFLhNWXdy+71qunyuRVv1A==[/tex] 表示取出的 [tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex] 个球中最大号码,写出 [tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex] 的分布律和分布函数。
举一反三
- 箱中有[tex=0.5x1.0]hdFTVbNvvzh5T04p00SpZA==[/tex]个同样的球,编号为[tex=4.429x1.214]ITPir/ciUWgsafx7Sph6M/sSrFO7bcnuosNjLxwVwn4=[/tex],从中任取[tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex]球,以[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]表示取出的[tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex]个球中的最小号码,试求[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]的分布列,并作此分布列的图形.
- 一袋中有[tex=0.5x1.0]swhA5SpCD6lPteGlwRbm9g==[/tex]只乒乓球,编号为[tex=3.929x1.0]JAbJiBKA8iqfASRGnJl6/w==[/tex]在其中同时取三只,以X表示取出的三只球中的最大号码,写出随机变量[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]的分布律.
- [tex=1.0x1.0]5ll/4oTq8VGGY6gN6eTenQ==[/tex] 个产品中有 [tex=0.5x1.0]+ElP8Glp1jNyDFWBiVUf/g==[/tex] 个正品, [tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex] 个次品, 每次从中任取一个,有放回地取 [tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex] 次,求取到 [tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex]个次品的概率.
- [tex=1.0x1.0]5ll/4oTq8VGGY6gN6eTenQ==[/tex] 个产品中有 [tex=0.5x1.0]+ElP8Glp1jNyDFWBiVUf/g==[/tex] 个正品, [tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex] 个次品,不放回地每次从中任取一个, 共取 [tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex] 次,求取到 [tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex] 个次品的概率;
- 乒乓球盒中有[tex=1.0x1.0]vtBa9L8pY2+8e14UyeHssw==[/tex]个球,其中[tex=0.5x1.0]HNefUrdF8bed/Hc2JSQNOQ==[/tex]个是新球.第一次比赛时任取[tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex]个使用,用后放回.第二次比赛时再任取[tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex]个球,求此[tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex]个球全是新球的概率.若第二次取出的[tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex]个球全是新球,求第一次取出使用的[tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex]个球也是新球的概率.