举一反三
- 下列题中,函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]与[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]是否相同?为什么?[tex=4.5x1.643]VW1h1JvHT/TsvFtzrARMc8eiQBD7qYqSLwCU4C+13HI=[/tex],[tex=3.786x1.357]O66uhOeScmLtdRq5Z1qHeg==[/tex].
- 函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 和 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 是否相同,为什么? [tex=7.857x1.5]S7CApxbz73y2R0zaXr+SDiBVQyrsylH21yJKDnNcXxG840U0KLqRpx54+SvThZqG[/tex].
- 下列函数中[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]和[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]是否相同? 为什么?[tex=10.071x1.5]na1xYaLnY5ikjs8VMdiuObc8DYg45dfSKZVq5cYgYcQ=[/tex]
- 下列函数中[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]和[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]是否相同? 为什么?[tex=3.214x1.357]89hEWVnSZAoSL3ukzaca7w==[/tex],[tex=8.429x1.357]8NxNt84io5y3yyk98Aj0di0aXS2U+ySOTYeSBz2Ltfc=[/tex]
- 设: (1) 函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在点 [tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex]连续,而函数 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 在点 [tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex]不连续; (2)当 [tex=2.286x1.0]ii77lCTXExv3mnaX1dHV/A==[/tex]时函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 和 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]二者都是不连续的,则此二函数的乘积 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]在已知点 [tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex] 是否必不连续?举出适当的例子.
内容
- 0
已知[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]为偶函数,[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]为奇函数,且[tex=8.857x1.357]J70c06NcKSuavVueJFA+2JxXMulFojgPT0TTO8QgrTU=[/tex],试求[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]、[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]。
- 1
设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]和 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]均为周期函数, [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的周期为 [tex=2.786x1.357]MrzotaiiJe2z5/ee6fNhaA==[/tex] 的周期为 3, 问[tex=5.786x1.357]7/1O6t1UW+GTmZRKeWOeIfBbG3X1mAHE8/22XDJDf/4=[/tex][tex=3.714x1.357]AXo/bl8buP2bvL9y5r/yDQ==[/tex] 是否是周期函数,若是,求出它们的周期.
- 2
设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]为可微函数,[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]为[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的反函数, 求[tex=7.143x2.857]0GtUrd74HajWRYIqA6+gzGtv+fENhCxFNp8nMm5GsoAsfHqe5T9NQzHNDG2ynKRPbxjdlc7aIhMkTvCOp3fLQA==[/tex]。
- 3
证明: 在 [tex=2.0x1.357]beH6DnGK6LEsYI2cIHxhuQ==[/tex] 中, 如果 [tex=1.929x1.357]aMCa7j968L/hYU5HJBvp5g==[/tex] 是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的倍式和, 并且 [tex=1.929x1.357]aMCa7j968L/hYU5HJBvp5g==[/tex] 是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的一 个公因式, 则 [tex=1.929x1.357]aMCa7j968L/hYU5HJBvp5g==[/tex] 是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的一个最大公因式.
- 4
求 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]的最大公因式:[tex=14.786x1.5]eWWYJXOYb+dlQxXoDoNn2SYAIHe7vmLeLsDaQsvCiMXRVe3wfhBEKXbqsY7VY4np[/tex]