• 2022-06-09
    下列函数中[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]和[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]是否相同? 为什么?[tex=10.071x1.5]na1xYaLnY5ikjs8VMdiuObc8DYg45dfSKZVq5cYgYcQ=[/tex]
  • 由于[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的定义域是[tex=8.143x1.357]8hrUnIp2gWal08m5/VeVS2fxV7cOH063qIXhyTARs8k=[/tex],[tex=1.857x1.357]4AsehPcyFJurfSXX5VJeww==[/tex]的定义域是 [tex=3.5x1.357]14IB9GRNB+MqpAhXjIBkng==[/tex],所以不同

    举一反三

    内容

    • 0

      已知[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]为偶函数,[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]为奇函数,且[tex=8.857x1.357]J70c06NcKSuavVueJFA+2JxXMulFojgPT0TTO8QgrTU=[/tex],试求[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]、[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]。

    • 1

      设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]为可微函数,[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]为[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的反函数, 求[tex=7.143x2.857]0GtUrd74HajWRYIqA6+gzGtv+fENhCxFNp8nMm5GsoAsfHqe5T9NQzHNDG2ynKRPbxjdlc7aIhMkTvCOp3fLQA==[/tex]。

    • 2

      设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是次数大于令的多项式, 求证: [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 等于某个不可约多项式 的幂的充要条件是: 对任意非常数多项式 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex], 或者 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 和 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 互素, 或者 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 可以整除 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的某个幂.

    • 3

      证明: 在 [tex=2.0x1.357]beH6DnGK6LEsYI2cIHxhuQ==[/tex] 中, 如果 [tex=1.929x1.357]aMCa7j968L/hYU5HJBvp5g==[/tex] 是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的倍式和, 并且 [tex=1.929x1.357]aMCa7j968L/hYU5HJBvp5g==[/tex] 是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的一 个公因式, 则 [tex=1.929x1.357]aMCa7j968L/hYU5HJBvp5g==[/tex] 是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的一个最大公因式.

    • 4

      设有函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]和[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex], 其中[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]为单调增加函数,且对任意的 [tex=6.071x1.357]Y9zvcV7q1EQdiM4yP+vLdM+NRZNN3Gd581OUFuJlpXU=[/tex], 证明:[tex=7.143x1.357]GoUgJ38Yq5IVriHmh1Nw859HQdE/ZiMc6FN2mAkHba8=[/tex]