举一反三
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立,且服从参数为 1 的指数分布. 记 [tex=13.5x1.357]ZrmgIX329+lIMwj+0JP7oX4KmceUiv4NOTdLGvSfjGFY26aIR9qNFK9EJaP3gu/x[/tex] 求[tex=3.857x1.357]t0PsS3YAPSnhTBV9LUFwGQ==[/tex]
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 以概率 1 取值为 0,而 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是任意的随机变量,证明 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立.
- 假设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]在圆域[tex=4.857x1.429]PJNRL2Lo6ZG5x7bHjsvQ7ByW7TRqnaqRUgyFAP96SLM=[/tex]上服从联合均匀分布.(1) 求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]的相关系数[tex=0.857x1.0]OD3VmuyZiq/0isb82QS4WA==[/tex](2) 问[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]是否独立?
- 假设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 和 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 在圆域 [tex=4.857x1.429]PJNRL2Lo6ZG5x7bHjsvQ7ByW7TRqnaqRUgyFAP96SLM=[/tex] 上服从二维均匀分布。(1)求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 和 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 的相关系数 [tex=1.571x1.0]7wwDFuycAIG1Sh4qLOA3bg==[/tex];(2)问 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 和 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是否独立?
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立, 且 [tex=14.571x1.357]/LWM6FHrBHtLXkTqBfQ+T0BBlv13ChaBMmapIVtBUkA=[/tex]。试求 [tex=3.071x1.357]P2SKStvRsj6Rl74RBCJH6w==[/tex]
内容
- 0
设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立, 且 [tex=7.929x1.357]O+N2TTMenOvXxfKYEr61RUXIhWzMHWhom5rjfv8PqLo=[/tex] 求: [tex=4.071x1.357]2LX6b/SpWvKUjn9SU0Se+A==[/tex]
- 1
设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]与[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]独立,且[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]服从均值为 1 、标准差(均方差)为[tex=1.429x1.429]4tia4Fmh8qvcSxImPIjBeg==[/tex]的正态分布,而[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 服从标准正态分布. 试求随机变量[tex=5.429x1.143]huB4ZoJzEVd/0NhytOd1Sg==[/tex]的概率密度函数.
- 2
设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 和 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 在圆域 [tex=4.857x1.429]PJNRL2Lo6ZG5x7bHjsvQ7A6odkNMe6sUD37iiMdl+fA=[/tex] 上服从均匀分布,(1)求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 和 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 的相关系数 [tex=0.571x1.0]wZfDAQ5tsV00QsfoitgWPw==[/tex]; (2) 问 [tex=1.857x1.214]drqhrkQv+rX/M+8NJCSetQ==[/tex] 是否独立?为什么?
- 3
设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立,且服从参数为 1 的指数分布。记 [tex=13.143x1.357]ZrmgIX329+lIMwj+0JP7oRYPfY+Ft6dOUN7OZj/S7JIFgJFaVV9SYRAd8fodtgDD[/tex] 求 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的密度函数 [tex=2.214x1.357]LhSw3+k+9xuQ4R6G1zlzzw==[/tex]。
- 4
设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]与[tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex]独立,且均服从[tex=2.929x1.357]HQ1ThyvAmW6Uz+O4RYDQEQ==[/tex],(1) 求[tex=3.071x1.0]WuUf02fkmjNveiZiPSHwdQ==[/tex]的分布密度; (2) 证明[tex=4.786x1.357]rMJ8EWN2Sk/aPimpvGIRLw==[/tex]与[tex=3.5x1.357]Jf66/fujpMYUDtI1+vFE7g==[/tex]也相互独立.