What is the single-precision floating-point number representation of 1.5 ?
A: [img=84x23]1803e26b99a5f8e.png[/img]
B: [img=82x23]1803e26ba400364.png[/img]
C: [img=84x23]1803e26bac548d3.png[/img]
D: [img=81x23]1803e26bb530b0b.png[/img]
A: [img=84x23]1803e26b99a5f8e.png[/img]
B: [img=82x23]1803e26ba400364.png[/img]
C: [img=84x23]1803e26bac548d3.png[/img]
D: [img=81x23]1803e26bb530b0b.png[/img]
举一反三
- What is the single-precision floating-point number representation of -9.625? A: [img=84x21]1803e26b82475df.png[/img] B: [img=84x21]1803e26b89e1465.png[/img] C: [img=86x21]1803e26b935ef27.png[/img] D: [img=86x21]1803e26b9bf2bed.png[/img]
- 设随机变量(X,Y)在区域{(x,y): 0<|y|< x <2}内均匀分布,则以下结果正确的是 A: 当0<x<2时,[img=96x25]1802dded7db6eef.png[/img]. B: E(X)=4/3 C: 当0<|y|<2时,[img=105x45]1802dded872b92f.png[/img]. D: P(X<1)=0.5 E: 当0<x<2时,[img=110x45]1802dded915de6e.png[/img]. F: E(X)=2/3 G: 当0<y<2时,[img=95x43]1802dded9a54300.png[/img].
- 设X为随机变量,若数学期望E(X)存在,则数学期望E(E(X))=__________。 A: E(X) B: 0 C: [img=51x27]18038f919d83a08.png[/img] D: [img=63x27]18038f91a6f0476.png[/img]
- 设随机变量X、Y相互独立,且[img=265x35]1786a06017102c9.png[/img]则[img=170x38]1786a060264e037.png[/img]( )。 A: 2 B: 10 C: 26 D: 4
- 设随机变量[img=52x13]17e0c0edb27595a.gif[/img],[img=60x31]17e0c0edbed05c6.gif[/img],X与Y相互独立,则[img=90x14]17e0c0edcb304a8.gif[/img]= A: -13 B: 15 C: 19 D: 23