• 2022-06-08
    设[tex=4.929x1.357]NU33nEIIDLKRHDHOnipUO8h8VTABb1827fTQc57H7g1NsGbLmOMhTH0SDI/iDC4k[/tex],对[tex=5.143x1.286]BwsNjGZzmRqMMhXgsGRobg==[/tex],求[tex=5.429x1.286]naWSEnPLtRAekJ7P3fjNmpRPignuts1ZDylqhjOCu8wxkgw3X8YWtkSR8fUrRMbK[/tex]与[tex=8.5x1.286]91FsMKY0MrzfLSc0MiKE54LAAOM+w4HJOxC168u2b7Q=[/tex]进一步求此分布的 变异系数、偏度系数和峰度系数 .
  • [b]解[/b]     因[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的密度函数为[tex=11.357x3.357]5VHmefGvW8lk7YwOcn4RYBs21YuAgSCw8TaBde0nAZoSNrLoOeJqZt4tEqOdTmgrQREMUZVl8/Sf6dbMrkPszvaewQzWJJ1eVNLTbNRlojq+tuyrDmH4nbk4YErNAzm+q5fNZPL8CSKCGlRGc8R+3A==[/tex],且[tex=0.571x1.286]pc/qlnA3cxu8Ag9jp3tYHQ==[/tex]为正整数时,[tex=8.643x2.429]QDF3on418hztfquUcJypQfQJK3DACZAkD+WrhEVXAE0JTRM7C3SyMdltkoDEHcsiYadkHorfnUjNG8pMQaRESg==[/tex][tex=6.857x2.071]m6VXCOtMs+FvAiFc9KZ+A1JnufuCRs3cbzuwCbGFtAbdXF+E7OqPYTsIqnT4m5pUZfFx8bv6APqvdJugXfnPUA==[/tex],[br][/br]故[tex=2.071x1.286]gJ3i9ssmINIvRMqdy6/9GA==[/tex][tex=8.5x2.429]QDF3on418hztfquUcJypQSTSRi/S+Lf6Oa59pPTKPMDU8IdVpb9wolOL/TqcbJx6dGr8t83svQtt0lDV5ppRYA==[/tex][tex=7.929x2.429]0BaTpgW7w1F1R8w++xFkLqP+4zVM+nx62EDaojal8FNA5erwz0ygbzkIVynxuk9u41pj7kO6f7jynaGrpczoPw==[/tex][tex=4.571x2.0]sIbxqWaH7+Iyoq+Y0m7j9RhUMoTVBCvMpvMGTNIWUwa0U5EDbhXYWkCF0jKsF/tM/Vp/R09naIn0VrJ+h3/r2w==[/tex];[tex=2.071x1.286]S2UQ5ZckZNXjjYEJV3KaiQ==[/tex][tex=8.929x2.429]QDF3on418hztfquUcJypQYmTqEwZrp9IK3bqBnzy14GC+Su9+NqJBGiZdFYSZuJT9ySfOg7pbqfDfzT26sZ8znMKloYo4rFunWTyQy5vvBo=[/tex][tex=8.357x2.429]0BaTpgW7w1F1R8w++xFkLodo6xLs+iwxI+W+cXVGHaM4tRfFMCgGHxe3X5gzR37CyoQwuZFrKk4fps0f02cPew==[/tex][tex=5.0x2.071]sIbxqWaH7+Iyoq+Y0m7j9Vp8Ik+PKijl4jm2roqGtBJ1S4Ro0jHvXIJkrRDOS7ZzPOmJevgtHgPjQKEOv4RKy73YlmicXEGbeOTEW+9Y4rg=[/tex];[tex=2.071x1.286]xq0wGEsrjmRmdUly++Ef/g==[/tex][tex=8.929x2.429]QDF3on418hztfquUcJypQVqQLeImaVlG4DiVDWwMT5QwkBM5xszLCssdAri4k6F5hhAdNfeQe7cTYdZOmRGHtV3wn4KDjuLzR0/weY03JXs=[/tex][tex=8.357x2.429]0BaTpgW7w1F1R8w++xFkLodo6xLs+iwxI+W+cXVGHaPX9zvksecLr0FkVysrC4ceDR7QhF86KYEWr+4YPfqOuw==[/tex][tex=5.0x2.071]sIbxqWaH7+Iyoq+Y0m7j9X+oFVBJdaoDDDEuxB3dpWdscp3PafljXEFs78Z5HoUjFLJVCy8a1eiUTqhL/zrewThH2bjXtD6C3lUAyaVHLS0=[/tex];[tex=2.071x1.286]rp+CCypwrg7CrYwuEaRjmg==[/tex][tex=8.929x2.429]QDF3on418hztfquUcJypQdnFiDtp63v350a+z+HRAXu+r8Mfz08MGfdiJLODplvBXksEuPNhnxegg53vl6ffONOEdGVkqnp3pUHIU0d50WU=[/tex][tex=8.357x2.429]0BaTpgW7w1F1R8w++xFkLodo6xLs+iwxI+W+cXVGHaMmYXpvNkvtm6cWtwXzLqKkCT1KHV43dNyc1Shx9/S/Gw==[/tex][tex=5.0x2.071]sIbxqWaH7+Iyoq+Y0m7j9Y5+DJCxij10InjOF6lETracFzUbVKOg6MGEXe08mTbgOcAEe01t6WJ2Xp1DbQq/vSIvlR7mcwZ44gS9PgLpeh8=[/tex];[tex=9.786x1.286]6PfmkobsK8VYXbRviCwLH3WEr+fOLywYcpChQyE2nH0=[/tex];[tex=9.429x1.286]ERUVhVeSewUebUmUJNgsL14dDuET2nuGHZFl7I76NVY=[/tex][tex=4.286x1.286]nViemFutUSwHMtV5fXQ8qw5G8fQw3sXrb/HPQBz6sg4=[/tex][tex=6.143x2.0]EHqofwriaNdT24vJUoF+jcaW9p0NdvaT2oeLSN2iP1kjybW+K0xWaTSmSVWqPMjaa7xRCsYvHG+m0agG3WzJl8xzyGlZknGfaxxoIJF4N7g=[/tex];[tex=1.929x1.286]6Pou7r1nOv4jWUy8jKLMew==[/tex][tex=7.286x1.286]MePECwpw6iJ+doOIkd+TL8vEilGHrmw3vVfe/zVfZNk=[/tex][tex=8.429x1.286]K8Z+rVZ9gWNWWkfiZTU9u0ZAYQoAyUfHorc5b1z3evy8xUqOxQM49N9RfW7LasHz[/tex][tex=6.429x2.0]d0e7OLWIvIZ/t1kaN8oOkj9y1Ay9Tjubq6RGZ/H/trq4Z0QVbM7bbsYExoVt1AkGt/lxhq3cc0VWWJ1LVDILfmlsAAkaBzmS/iX7GsffyHo=[/tex][tex=4.214x2.0]VFxDNk5egOiZNGjOtdyudaQFfIoxsNtP1pA1ijQ8s5VrJ4F1TJss7ltFBUTj7zC7n4z5eQwX/g7VDhH1HGa/mQ==[/tex];[tex=9.429x1.286]LuNvA4ylvXXP6QBUONKQPoJ2kNV4AekkC6XItc+5y1w=[/tex][tex=12.143x1.286]XQWgumzOJwq9v2sMHeOh0VLW47GrXJT+z3M9mIu74F/y2UcJxFiaYl5QLiT4hYEiUap8w5a3DgRfviB4hlL7IVXO0QKF4pqhsx7AnCliBN4=[/tex][tex=6.429x2.0]04O5sFoso01Tv9yXfFzVTT3f8ZtzdpiaAS6ettWuaAC2Qy9XkBdwSqUNp0dqsoFv/xaPpmxFOVHiFGUvvCEJSw+NuZZyWSDPmT1IavLU4Vw=[/tex][tex=9.071x2.0]YhiTtBmpVfADcPjQ21fozVE1Zy5kO/wVniJFoo9Utjnz/rYK9EhCpgc+NeYqnKQKoCPqa8A8GLHSFOzQOYjB/yaOgw5akTEDv/jK6HOe/vLGLv6+Ik4vB4aPrnot0kvDVFdx4Ciwc1EuqqaxdZMOdw==[/tex];变异系数[tex=12.643x2.929]GBoQxO4IMtDzVqsb7pT03CBtOi06fbCpGTF3Cf+1FB+f2EcD0l7cazN2+XUgpLZgObUyFvmI514ufeMztUiT70zEJ/DxbXtElDXpbZz1A1sydLAWvMfUtfBLRXYhfeMc[/tex];[br][/br]偏度系数[tex=7.214x2.214]3BSGF2iWy3NFGx/rJNJTRBGnobMpgc7JnCfllEz6a0L4X5QC1Si3M3RlQFqFAioLUMLMO/NnCjxOP/8GcCnwNQ==[/tex];峰度系数[tex=11.5x2.143]0p7yD5fhmkMlJU0+mASZ8OZobhSkPW2Ksydng7/nzyPJETh4GmnKbmahHWapfSmOdtAbQAD45qveQ4hvbYva/Q==[/tex] .[img=189x177]177dd474ba7f804.png[/img]

    内容

    • 0

      6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。

    • 1

      假设“☆”是一种新的运算,若3☆2=3×4,6☆3=6×7×8,x☆4=840(x>0),那么x等于: A: 2 B: 3 C: 4 D: 5 E: 6 F: 7 G: 8 H: 9

    • 2

      设随机变量(X,Y)的概率分布列为[img=345x154]178ab1c9ce3bc1b.png[/img]求[tex=1.571x1.0]JUrGU6ftUjxQCIr6CyfDwQ==[/tex],[tex=1.357x1.0]yL/7/hhyqgwzAX8jnIq3OQ==[/tex],[tex=4.357x1.357]LN0xwhQHSOeLwBClUlpHQw==[/tex].

    • 3

      设4阶行列式[tex=8.643x4.786]kCqzrKR+UWkjw9qkP+VysJkXZPW4gGy3WQYxeVBjPyscbkh4jaqeuzTHKb8ADzZillEJv//dDYsA3eIgtl1m/nm9OC7iB1bU2mKbtX9y2U+l+hgZ+eGWwjw5nXaWh08GIKETM5w8LxpwKqz3U8YNoNCZ5N3cNaZXoyN7V8Cd6/8=[/tex],求[tex=9.786x1.286]ZzzqfAYue2NjktxDTXMzCBfMGki0q7fbkxRSW9V8r5u5UHngG2n2H+IYF6KiCpGl[/tex] .

    • 4

      >>>x= [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9]>>>print(x.sort()) 语句运行结果正确的是( )。 A: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] B: [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9] C: [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0] D: ['2', '4', '0', '6', '10', '7', '8', '3', '9', '1', '5']