z=f(x,y)是由方程z^3-3xy+3x=8所确定的函数,求σz/σy
举一反三
- 设f(x,y,z)=xy^2z^3,且z=(x,y)由方程x^2+y^2+Z^2-3xyz=0确定,求αf/αx
- 9. 已知函数$z=z(x,y)$由${{z}^{3}}-3xyz={{a}^{3}}$确定,则$\frac{{{\partial }^{2}}z}{\partial x\partial y}=$( ) A: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ B: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-xy)}{{{({{z}^{2}}-xy)}^{2}}}$ C: $\frac{z({{z}^{3}}-2xyz-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ D: $\frac{z({{z}^{3}}-2xy{{z}^{2}}-{{x}^{2}}y)}{{{({{z}^{2}}-xy)}^{3}}}$
- 由方程\({z^3} - 3xyz = {a^3}\)所确定的隐函数\(z= f(x,y)\)的偏导数\( { { \partial z} \over {\partial x}} = \) A: \( { { yz} \over { { z^2} - xy}}\) B: \(- { { yz} \over { { z^2} - xy}}\) C: \( { { yz} \over { { z^2} +xy}}\) D: \(- { { yz} \over { { z^2}+xy}}\)
- 设\(z = z\left( {x,y} \right)\)是由方程\({z^3}{\rm{ + }}3xyz - 3\sin xy = 1\)确定的隐函数,则\( { { \partial z} \over {\partial y}}=\)( ) A: \( { { y\left( {\cos xy - z} \right)} \over { { z^2} + xy}}\) B: \( { { y\left( {z - \cos xy} \right)} \over { { z^2} + xy}}\) C: \( { { x\left( {\cos xy - z} \right)} \over { { z^2} + xy}}\) D: \( { { x\left( {z - \cos xy} \right)} \over { { z^2} + xy}}\)
- 绘制函数 z=(x+y)^2 的曲面图 A: x=-3:0.1:3; y=-3:0.1:3; z=(x+y)^2; surf(x,y,z) B: x=-3:0.1:3; y=-3:0.1:3; z=(x+y).^2; surf(x,y,z) C: x=-3:0.1:3; y=-3:0.1:3; z=(x+y).^2; meshgrid(x,y,z); surf(x,y,z) D: x=-3:0.1:3; y=-3:0.1:3; [X,Y]=meshgrid(x,y); Z=(X+Y).^2; surf(X,Y,Z)