举一反三
- 设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的任意关系,证明下列各式:[br][/br][tex=5.714x1.357]01kUYZnZouvqf6Dz0kFCpA==[/tex]
- 求解下列矩阵对策,其中赢得矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为$\left[\begin{array}{llll}2 & 7 & 2 & 1 \\ 2 & 2 & 3 & 4 \\ 3 & 5 & 4 & 4 \\ 2 & 3 & 1 & 6\end{array}\right]$
- 设矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 相似, 其中[tex=8.643x3.643]3BT1BgBZQ5uJXxD5dg+w26muwh1xN1sRXO8Q3eF5f+iTpB6kD/3/7F/Sewwa3hxWs7TCQWFyZq0QSUW2LGcSxj3jay92Ev0sXUjwbpJxe2w84vpk6B1wjRlgxeXY7DUa[/tex], 已知矩阵 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]有特征值 1,2,3, 则 [tex=1.357x0.786]C5gMMrS05DsgTY0BSnf1fg==[/tex] A: 4 B: -3 C: -4 D: 3
- 设 [tex=4.786x1.357]fgsPqJBOIop96XpxWWqkgA==[/tex].举出[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 上关系 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的例子,使得它具有下列性质.[br][/br][tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是传递的
- 设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 为[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的自反和传递的关系,证明[tex=4.143x1.214]wI8xtIa6pF8inYWYe3KeRifrKOkzkU+85PIg1rCbYqM=[/tex] 是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的等价关系.
内容
- 0
已知[tex=7.786x3.5]QN0fTQbn6M33pU3gx/S2sjK5reBfyeNY2er5BSmUnP2bJk2RKrHcOTktn0jwS2dXnOq4wvcctaNp3MMzqUus1lKKm6qGoI6CMx/tFS3/bJZ8Yr04zVcm3wuDtHoJ6IW9[/tex],求矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的秩=( )。 未知类型:{'options': ['1', '2', '3', '4'], 'type': 102}
- 1
设事件 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 和 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 互不相容, 且 [tex=8.786x1.357]1A7WHGcU5mWBGzLoAYLD+KtEa2iCYBKvWlFt0IZxoOI=[/tex] ,求以下事件的概率:(1) [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 与 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 中至少有一个发生;(2) [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 和 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 都发生;(3) [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 发生但 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 不发生.
- 2
设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 为 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]到 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]的关系, [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]为 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 到 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 的关系, [tex=4.357x1.214]dCJ27MH6XMSYdLpw5PqZjsUM43DKwCSE5ItI3M89mZ0=[/tex]证明:[br][/br][tex=7.643x1.357]jjukv4vnmQbsnMwcqEkKyIVAhBxCaLv5QLA0GZ5oDZg=[/tex]
- 3
设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是集合[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的等价关系,证明 [tex=0.786x1.857]HvRfdD49AA11ZLsdQA7Xxg==[/tex]也是集合 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的等价系。
- 4
设 4 阶方阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]满足条件[tex=13.429x1.571]pNXwj7dxoGbcprO3/HATinbMcrt8sC5y1uPd3TRH6ssCiv8WtIXVXb9cSHXuJP20[/tex], 其中[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]为 4 阶单位矩阵,求[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的伴随矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]有一个特征值。