举一反三
- 设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的任意关系,证明下列各式:[br][/br][tex=5.714x1.357]01kUYZnZouvqf6Dz0kFCpA==[/tex]
- 设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的任意关系,证明下列各式:[br][/br][tex=7.857x1.357]kW3CK86ROTQQBMdYOc4LuIkRInAfS/EA2L3KAY3cIfbqxy4A1A2IWVKkPZqrxgZqN4SD2fxsYRVqrqIv9cNRRg==[/tex]
- 设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的等价关系,将[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的元素按[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的等价类顺序排列,请指出此等价关系 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 的关系矩阵 [tex=1.571x1.214]vGYzHX53AOjsp+qXDwbdhg==[/tex] 有何特征?
- 设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 为[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的自反和传递的关系,证明[tex=4.143x1.214]wI8xtIa6pF8inYWYe3KeRifrKOkzkU+85PIg1rCbYqM=[/tex] 是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的等价关系.
- 设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是集合[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的关系,构造[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的关系[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]如下:对于任意[tex=2.786x1.214]UUb6gXN+Pgi3z2iwygIXNA==[/tex],[tex=8.5x1.357]ZrPhw4AVgPUCh8CbjRl3lkyVRUYodt4NCPIQSBDHEZkbUNZqG7lwA3N0Qz1ds7aw[/tex]且[tex=3.571x1.357]4R81Ci1GZLtVgBX2kmc0lg==[/tex]要使得[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]是等价关系,关系[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]必须满足哪些性质?
内容
- 0
设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 为 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]到 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]的关系, [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]为 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 到 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 的关系, [tex=4.357x1.214]dCJ27MH6XMSYdLpw5PqZjsUM43DKwCSE5ItI3M89mZ0=[/tex]证明:[br][/br][tex=7.643x1.357]jjukv4vnmQbsnMwcqEkKyIVAhBxCaLv5QLA0GZ5oDZg=[/tex]
- 1
设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为非空集合,[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 为[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的等价关系, [tex=5.071x1.357]vpuvsmbJMglxdWJtJNCULuKS9sgT4Jnay/4aPOoPNzk=[/tex]为自然映射. [br][/br]设[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]为给定自然数,[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]为整数集合上的模[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]相等关系,求[tex=4.286x1.357]0qEQVRzZWfGydpgUI2FEkQ==[/tex]
- 2
设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 上的关系,证明若 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是自反和传递的,则 [tex=3.857x1.0]8joLZ8gJQquajh/o+JBLnQ==[/tex]其逆真吗?
- 3
设 [tex=6.429x1.357]klM2zPlpUvR9h+kvfCE1fhUIUP7Sz0ZGhI/sOPx4vG4=[/tex] 是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 上的等价关系, 且 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 在[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上所构成的等价类是 [tex=5.357x1.357]YUAvYM+3tTbTdgG9W2P+R2LuZ1txekHGBdI3ojQ5ctA=[/tex].求[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex].
- 4
设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的自反关系,证明 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 上等价关系的充分必要条件是 :若 [tex=5.286x1.214]X6zuQfhf0cOjWP7w5/g3vg==[/tex] 且[tex=5.5x1.214]Ou7tfIX47CQpyquED6JZzw==[/tex] 则有[tex=5.429x1.214]r9+YcxzdBj67QSYMAva2dw==[/tex]