设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的任意关系,证明下列各式:[br][/br][tex=5.714x1.357]01kUYZnZouvqf6Dz0kFCpA==[/tex]
举一反三
- 设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的任意关系,证明下列各式:[br][/br][tex=7.857x1.357]kW3CK86ROTQQBMdYOc4LuIkRInAfS/EA2L3KAY3cIfbqxy4A1A2IWVKkPZqrxgZqN4SD2fxsYRVqrqIv9cNRRg==[/tex]
- 设 [tex=4.786x1.357]fgsPqJBOIop96XpxWWqkgA==[/tex].举出[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 上关系 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的例子,使得它具有下列性质.[br][/br][tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是传递的
- 设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 为[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的自反和传递的关系,证明[tex=4.143x1.214]wI8xtIa6pF8inYWYe3KeRifrKOkzkU+85PIg1rCbYqM=[/tex] 是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的等价关系.
- 设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 为 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]到 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]的关系, [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]为 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 到 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 的关系, [tex=4.357x1.214]dCJ27MH6XMSYdLpw5PqZjsUM43DKwCSE5ItI3M89mZ0=[/tex]证明:[br][/br][tex=7.643x1.357]jjukv4vnmQbsnMwcqEkKyIVAhBxCaLv5QLA0GZ5oDZg=[/tex]
- 设 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是集合[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的等价关系,证明 [tex=0.786x1.857]HvRfdD49AA11ZLsdQA7Xxg==[/tex]也是集合 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的等价系。