设函数[tex=9.429x1.286]60ZZrqZxR6FjwIEDJkkN8GZzuRA9Db9FoIYXt88y0rQ=[/tex],问常数[tex=2.286x1.286]bgRCqFDh7Qlm+Jdlv7ZhhQ==[/tex]满足什么样的关系时,(1)[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]没有极值;(2)[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]可能只有一个极值;(3)[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]可能只有两个极值。
举一反三
- 设 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex] 为连续函数, 求证:(1) 若 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex] 为奇函数, 则 [tex=4.214x2.286]0fRlWbNJGvj5VdT3U3Vk0gsJ0wPKCSLHiIsl69Vu800=[/tex] 是偶函数 ;(2) 若 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex] 为偶函数, 则 [tex=4.214x2.286]0fRlWbNJGvj5VdT3U3Vk0gsJ0wPKCSLHiIsl69Vu800=[/tex] 是奇函数;(3) 奇函数的所有原函数均为偶函数; 偶函数的原函数中只有一个奇函数.
- 设[tex=9.357x2.5]NW+Q6qhR9qMwFYIXdm/P9gOuLubklcu4xQaceK4KvrdRpPRsgqW+PFcwrgZEa8gdCC3tL694woFG5YfYgdifAQ==[/tex]。(1)证明[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]是以[tex=0.643x1.286]USGVpa36zb6HMu8k0moHJA==[/tex]为周期的周期函数;(2)求[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]的值域。
- (1)设 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]为可导函数, [tex=1.786x1.286]jg4bgzd+cKocBmeYxC3pQQ==[/tex] 为连续函数。试证在[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]的两个零点之间,一定有[tex=7.071x1.286]NP/Tk1dNVC5XgdXiZaik59O31JqNrpVPtxIJeiJLqtM=[/tex] 的零点。(2)设 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]为可导函数, [tex=1.786x1.286]jg4bgzd+cKocBmeYxC3pQQ==[/tex] 为连续函数。试证在[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]的两个零点之间,一定有 [tex=7.571x1.286]MpGqAytk50XFougUBhxb5J8qk6xnEAHWpiNZqTd9Rwg=[/tex]的零点。
- 设[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]连续,若[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]满足[tex=10.5x2.429]KEskdFvxflbt/GW6hsSi7Q6jIGxIzQih42thcBiamZfgBbwUcQtyCMPOfURA6pfJ[/tex],求[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]。
- 设函数 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]与[tex=1.786x1.286]jg4bgzd+cKocBmeYxC3pQQ==[/tex] 有相同的定义域,证明:1)若 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]与[tex=1.786x1.286]jg4bgzd+cKocBmeYxC3pQQ==[/tex] 都是偶函数,则[tex=3.714x1.286]ozsp7XPKgBFjOdE7oDnq8Q==[/tex]是偶函数;2)若 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]与[tex=1.786x1.286]jg4bgzd+cKocBmeYxC3pQQ==[/tex] 都是奇函数,则[tex=3.714x1.286]ozsp7XPKgBFjOdE7oDnq8Q==[/tex]是偶函数;3)若 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]与[tex=1.786x1.286]jg4bgzd+cKocBmeYxC3pQQ==[/tex] , 一个是偶函数另一个是奇函数,则[tex=3.714x1.286]ozsp7XPKgBFjOdE7oDnq8Q==[/tex]是奇函数。