设[tex=9.357x2.5]NW+Q6qhR9qMwFYIXdm/P9gOuLubklcu4xQaceK4KvrdRpPRsgqW+PFcwrgZEa8gdCC3tL694woFG5YfYgdifAQ==[/tex]。(1)证明[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]是以[tex=0.643x1.286]USGVpa36zb6HMu8k0moHJA==[/tex]为周期的周期函数;(2)求[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]的值域。
举一反三
- 设[tex=9.357x2.5]NW+Q6qhR9qMwFYIXdm/P9gOuLubklcu4xQaceK4KvrdpdE7b8WJL/5twH+8tJ2DBXj0BmxC6IoV8LkBb3RRJxw==[/tex],(I)证明[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]是以[tex=0.643x1.286]USGVpa36zb6HMu8k0moHJA==[/tex]为周期的周期函数; (II)求[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]的值域。
- 设 [tex=9.357x2.5]aU/OT6xhxkxK/Nbs7vFK7fM4PkV46M2YPUzOqxmUXmD7ZcMqycTczBkWBSIqh5lK[/tex],(I)证明 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex] 是以 [tex=0.643x1.286]USGVpa36zb6HMu8k0moHJA==[/tex] 为周期的周期函数;(II)求 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex] 的值域。(本题满分11分)
- 设 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex] 是连续函数。(1) 利用定义证明函数 [tex=7.357x2.643]wj19iVziwhcddHoSbOeZ53gjMBxjQAH/PcfTSpadvE0UnkPwDslb00HFtKYkgM9X[/tex] 可导, 且[tex=5.5x1.286]aioBMzvqzBeZ8o5EjtXw19ELszAjdIRruviyhqqX+L4=[/tex];(2) 当[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex] 是以 2 为周期的周期函数时, 证明函数 [tex=13.786x2.786]Vhx2KvWIsGdQGZadW3if7acVl7IXSwWOwcV1slKNUnHQ+aZuky9CS29QEB/7qIHsr9w3YIYs6RJhvITWAy2vjHKGtDLy8R6Pbmh6BDCQrkk=[/tex]也是以 2 为周期的周期函数。
- 设[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]是连续函数,当[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]是以2为周期的周期函数时,证明[tex=3.143x1.286]RJcl+hPahnWD/JzSl8v51g==[/tex][tex=4.929x2.286]0fRlWbNJGvj5VdT3U3Vk0o7MsngDa9KcEA2NAoFHkMI=[/tex][tex=4.143x2.429]2e0RkuqTyA9PZn4pM4xWfigqxIm37OrplsiC4FF1NdI=[/tex]也是以2为周期的周期函数 .
- 设 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex] 是以 2 为周期的周期函数, 其在一个周期上的表达式为 [tex=12.571x3.357]0Oc6OdDyTxw5ASPscCgHydwNiLKQNm8ULSOe8FM+phPTmVCKwHarXEcWGZaeE47LkaO/brSwBweLnRhiZDnX9L8RW3tWYgZ0IWcZ0fN8B2F8p+IYKtypI5xU362AJTRVZpccob0fzHuWgCNrAyF3aQ==[/tex] 则 [tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex] 的 Fourier 级数在 [tex=3.071x1.286]fYiEZXPb45jL62g69EDIjA==[/tex] 处收敛于[input=type:blank,size:6][/input].