• 2022-06-09
    题图[tex=1.357x1.357]TWUgLpDrEXIKICMuiEQPjw==[/tex]电路中,已知 [tex=5.143x1.5]vPhZr9VNdE+TTQcqWDq84zymXuq3wK3Lqwpr7RBEIuX1AAFwxirB9rZpU3YFOQjc[/tex], 其 [tex=2.071x1.357]T3ye52AJDdK9KKVrGZhk7fU4ldrm1S+fCme+H/3IBmI=[/tex] 波形如图 [tex=1.357x1.357]fjWMaYcefEESw2uiWhETZw==[/tex] 所示,试求 [tex=1.929x1.357]fpKeggpLJzPWzKQlJQOF4j7NQEGK3AtfsHATDyDtz7I=[/tex]。[img=661x237]179a2d3710d1ae5.png[/img]
  • 本题利用三要素法分别求零输入响应和零状态响应,又由于外加激励波形比较复杂,故通过阶跃响应求零状态响应。[br][/br][tex=1.286x1.357]VAHhaW1te0xvoqDVN54/dg==[/tex]求零输入响应 [tex=2.429x1.357]rv0oQ4jh8iLOKy24fdIHLA==[/tex]令 [tex=3.357x1.357]HWAGV8Cw7TuC8fHIWFAvjg==[/tex] 。由换路定则得[tex=10.571x4.357]rZM5/OPAdr7aX+kNl9iwpHdvjwIVzzqVdTxnOtUh+VOW2YSWY6WZPCNbAJUNjFZZEgFzrVRHWjWhJEPx2nBzOrWWV60yjJIFcpfXqb231tA2HS5a7oVqQYsw2+ulrEcYtNHLpJ/pvYHq1v/UzASNvLjH9eXpOx6DrnCPsJU6z/EjI7z8Uo5Z9mTz48/752GDUA7K5fVwEN4PBJ5TKn1knpNe4quqNUl2rU9j3upy9El6+0YFSZtIah2QQKULQyUi[/tex]代入三要素公式得 [tex=9.429x1.429]EtCI8NC0AOjz1zGCyjrdlT9GKXQIuWSO6APwWS4QHUOh8aYEPhiNz89m8E6eadq4e2ED/otMvnan4VXKYL6XDw==[/tex][tex=1.286x1.357]BEB68bP4vOVk/XYYizw11w==[/tex] 求零状态响应 [tex=2.643x1.357]in+RNByMJ+LSdbw5ielSbQ==[/tex]先求 [tex=2.357x1.357]o6qCp6ZG0DI8O9UhMfpKAKK0TKvnaEstgZOnDIb0lTM=[/tex]。令 [tex=9.357x1.5]ILkB1ZT7DcsOVXhYvPYCPDhHgrYdU+qRY6flqqNr9exLiYfFXwsohvKA+jk+zdnfn+qj/GQzQIZu9SJ8ZwQDag==[/tex], 由三要素法,得[tex=8.429x1.571]uRRtvBRLmYI8Hzl6wYApEgIgFcgqMteK0pZSNeO3BD7T08SUihXw8utGErNx9iUWpwFuO0v+kq4H2EdsUSgpEg==[/tex]又 [tex=13.571x1.357]IaG3LCEqCdOMpQvfBIqEWhRkco0XHbyxt9vrYupYtp3yccCk7f6wfZMkRhGFd9TJmyi7+5KWL8wS12mjbSP/rQ==[/tex]故  [tex=16.286x5.857]Drex+hL+TH1Ge77sJEbjNDiHIEcbCJUVfsSbUvWyU4nrLYA/DCXFlj4Te/X0ipsAFB6FG9nrEpnMM0cvwogbdvIBKyzmIuWinKl0ZVcH9Yf9pOdUu2TYO+tOdyPWnkc406SZP4H2LLAIcjy/gNGDXzLhJow+qBTE83FQpQrW6GBESANnsA2t5HtSQyYdUg/wmE2Sqwjr3L+gn7K3g4xgnwYaGV/RFWG6B+pFGUIrCYNElcDI3CTu+zS0N1ADPQ2LPEDpZOtbDk54W1VvGY9PHTt4jGVOPMImAloFm28sCBrPn92wtx+RmqS+83H7j1mY[/tex]最后得  [tex=20.714x5.857]QqDYriQ2D8jxD+zLrhyPxAcxiY2fO2JxhXqw9cGnMFFVJ7nWGBjOX4A1BawYN1I/kz4fbhldExGjPBz0QRDWZBQWoA37UwBZx+oOfngYcgAn/IARq35EAq2dJHJK8Hu9207aEpR2Jnb8bRdsAdIJus3ri0ZEJ4C2URcgtmFjMUY9Bsnq6nq4cUrKj46cZ7pM2L7nRX1u/WbuE6lIhjRjUf5dTj1L2xnK3ypk5N+6+dj0rJ2dLhKTRSjk1YQ+ZF6Mod35pX3KD+DBkYJ2HK6fFwyuvx7yGRWH6CNQhBDcbUJvDAX6I/E80HNNSdYqpPnFw/lGyyvUFzyKRsI7mR5q3dHWER31M66/t4n5w2m58HlDWEQscD+6o0o7egCogmOq[/tex]

    内容

    • 0

      已知 3 阶矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 与 3 维列向量 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 满足 [tex=6.857x1.357]Lw7MY+vHiOJju+aMmJosSf4Q+w2eLqeFWXwpoQ9dXvI=[/tex],且向量组 [tex=4.5x1.429]vem1xqfqZOrWU+JHf+8HvdhAgrXD23Plvxbo91uzfU0=[/tex] 线性无关. (1)记 [tex=10.643x1.357]AnYXKFDyPsTPeDyomY8dmRFR4J2CsEpO1CX2CbnqeD8MXUw/OcNFDAeFlcb/6gsH[/tex],求 3 阶矩阵 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex],使 [tex=3.571x1.0]4xPdkWplQbj/Ow7K5IaMcA==[/tex];(2)求 [tex=1.357x1.357]dF7dp+ABMXt2bMwvh7dh+w==[/tex] .

    • 1

      表3 3给出Y关于X,X的线性回归结果。[img=597x133]17b00b1eab2e326.png[/img] 求拟合优度[tex=1.214x1.214]P3LPDgc2Q7c/wCL66Px9nA==[/tex]及调整的拟合优度[tex=1.214x1.214]pIdgZWBugoI7kaKkhUVTug==[/tex]。 

    • 2

      6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。

    • 3

      设随机变量(X,Y)的概率分布列为[img=345x154]178ab1c9ce3bc1b.png[/img]求[tex=1.571x1.0]JUrGU6ftUjxQCIr6CyfDwQ==[/tex],[tex=1.357x1.0]yL/7/hhyqgwzAX8jnIq3OQ==[/tex],[tex=4.357x1.357]LN0xwhQHSOeLwBClUlpHQw==[/tex].

    • 4

      设[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]的分布律为:[img=242x105]1790c2a61ccdfd0.jpg[/img]求:(1)[tex=1.571x1.0]pGYiD18r66gsUrCx6KlaQA==[/tex];(2)[tex=4.429x1.357]3sp5UFGvGZj4HHBU1G6J+Q==[/tex];(3)[tex=3.143x1.571]oibOEPzqOMutspJWiy6hN9XiV3OZWuBA3Kqc1r8O6C4=[/tex];(4)[tex=1.714x1.0]X5FdyNclpf2RVybCBYcR8g==[/tex]。